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ABSTRACT  

Analog-to-digital converters (ADCs) are becoming increasingly common in many systems 

in integrated circuits. Spectral testing is widely used to test the dynamic linearity performance of 

ADCs and waveform generators. With improvements in the performance of ADCs, it is becoming 

an expensive and challenging task to perform spectral testing using standard methods because of 

the requirement that the test instrumentation environment must satisfy several stringent conditions. 

In order to address these challenges and to decrease the test cost, in this dissertation, four new 

algorithms are proposed to perform accurate spectral testing of ADCs by relaxing three conditions 

required for standard spectral testing methods. 

The first method developed is relaxing the requirements on precise control of coherent 

sampling and input signal amplitude. The efficiency and accuracy of this method is similar to the 

straightforward FFT, but it can simultaneously handle amplitude clipping and noncoherent 

sampling. By replacing a noncoherent and clipped fundamental with a coherent and unclipped one, 

correct spectral specifications can be obtained. Both simulation and measurement results validated 

the proposed method. 

The second algorithm can simultaneously perform the linearity test and the spectral test 

with only one-time data acquisition. Targeted for realizing the cotest of linearity and spectral 

performance under noncoherent sampling and amplitude clipping, a new accurate method for 

identifying the noncoherent and clipped fundamental is introduced. The residue after removing the 

identified fundamental from raw data is used to obtain the linearity and spectral characterizations. 

Simulation and measurement results against the standard test methods collaborate to validate the 

accuracy and robustness of the new solution. 
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The third method proposes an efficient and accurate jitter estimation method based on one 

frequency measurement. Applying a simple mathematical processing to the ADC output in time 

domain, the RMS of jitter and noise power are obtained. Furthermore, prior information of 

harmonics need not be known before the processing. The algorithm is robust enough that 

nonharmonic spurs do not affect the estimation result. Using the proposed algorithm, specifications 

of the ADC under test can be obtained without the jitter effect. Simulation results of ADCs with 

different resolutions show the functionality and accuracy of the method. 

The last method is developed to accurately estimate the SNR with sampling clock jitter. 

This method does not require a precise sampling clock and thus reduces the test cost. The ADC 

output sequence is separated into two segments. By analyzing the difference of the two segments, 

the RMS of jitter and the noise power are estimated, and then the SNR is obtained. Simulation and 

measurement results against the standard test methods collaborate to validate the accuracy and 

robustness of the new solution. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

ADC is one of the important categories of mixed-signal products. Accurate and efficient 

testing of high-performance ADCs is a challenging task in the modern industry as the speed and 

performance of the ADC increase dramatically. Spectral testing, also known as AC test, is related 

to the ADC’s dynamic performance, including signal-to-noise ratio (SNR), total harmonic 

distortion (THD), spurious-free dynamic range (SFDR), and so on. In order to accurately perform 

the spectral test, the IEEE standards recommend the test setup to satisfy a list of stringent 

requirements. The test setup that satisfies all the conditions is referred to as the “ideal DFT (discrete 

Fourier transform) based test method” in this dissertation. 

The challenges and test cost of the spectral testing come from the following aspects [1]: (1) 

low-distortion stimulus, (2) coherency between input frequency and sampling frequency, (3) 

stationarity of reference, and (4) clean sampling clock. 

With the increase in the resolution and speed of ADCs, the test setup requirements for the 

ideal DFT-based test become much more stringent. A lot of effort has been spent on satisfying the 

test setup requirements, which increases the test time. Relaxing stringent conditions on the test 

setup not only decreases the test setup time but also facilitates the design of system-on-chips (SoCs) 

with on-chip test capability. Several spectral test methods that have been proposed relax one or 

more of the stringent requirements. With several methods proposed, it is not clear to the user which 

method provides the best results with minimal constraints. 
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1.2 Dissertation Organization 

Four new test methods that address the aforementioned challenges to perform spectral 

testing are presented in this dissertation. As mentioned earlier, the methods can be applied to test 

high-performance ADCs or high-performance waveform generators. These methods can be used 

either in production testing or in BIST applications to decrease the test cost. The dissertation is 

arranged in the following order. 

In Chapter 2, a spectral testing method based on fundamental identification and replacement 

is developed for the requirements on precise control of coherent sampling and input signal 

amplitude. The efficiency and accuracy of this method is similar to the straightforward FFT, but it 

can simultaneously handle amplitude clipping and noncoherent sampling. By replacing a 

noncoherent and clipped fundamental with a coherent and unclipped one, correct spectral 

specifications can be obtained. Both simulation and measurement results validated the proposed 

method.  

In Chapter 3, an algorithm that can simultaneously perform the linearity test and the spectral 

test with one-time data acquisition is proposed. Targeted for realizing the cotest of linearity and 

spectral performance under noncoherent sampling and amplitude clipping, a new accurate method 

for identifying the noncoherent and clipped fundamental is introduced. The residue after removing 

the identified fundamental from raw data is used to obtain the linearity and spectral 

characterizations. Simulation and measurement results against the standard test methods collaborate 

to validate the accuracy and robustness of the new solution.  

Chapter 4 proposes an efficient and accurate jitter estimation method based on one 

frequency measurement. Applying a simple mathematical processing to the ADC output in time 
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domain, the RMS of jitter and noise power are obtained. Furthermore, prior information of 

harmonics need not be known before the processing. The algorithm is robust enough that 

nonharmonic spurs do not affect the estimation result. Using the proposed algorithm, specifications 

of the ADC under test can be obtained without the jitter effect. Simulation results of ADCs with 

different resolutions show the functionality and accuracy of the method.  

In Chapter 5, a method is developed to accurately estimate the SNR with sampling clock 

jitter. This method does not require a precise sampling clock and thus reduces the test cost. The 

ADC output sequence is separated into two segments. By analyzing the difference of the two 

segments, the RMS of jitter and the noise power are estimated, and then the SNR is obtained. 

Simulation and measurement results against the standard test methods collaborate to validate the 

accuracy and robustness of the new solution.  

Chapter 6 concludes the dissertation. 
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CHAPTER 2. EFFICIENT SPECTRAL TESTING WITH CLIPPED AND 

NONCOHERENTLY SAMPLED DATA 

In a built-in self-test (BIST) environment, clipping is hard to avoid if one wants to obtain 

the full-range performance of an ADC. This could be due to several factors, such as circuit 

component mismatch, noise, clock jitter, and many others. Furthermore, coherency is a challenging 

task to implement in BIST as its accuracy requirement on the frequency of input signal is extremely 

high. This chapter proposes a new spectral testing method with the efficiency and accuracy similar 

to the straightforward FFT, but it can simultaneously handle amplitude clipping and noncoherent 

sampling. By replacing a noncoherent and clipped fundamental with a coherent and unclipped 

fundamental, correct spectral specifications can be obtained. Simulation results show the accurate 

spectral parameters of four ADCs with different resolutions. The proposed method is validated 

using the measurement result of a commercial 16-bit ADC. The algorithm error is quantitatively 

bounded using a theoretical analysis and also justified with the simulation result. 

2.1 Introduction 

Spectral testing is an important category in modern measurement technology. It is usually 

implemented by applying a pure sine wave to the device under test (DUT) and analyzing the 

spectrum of the output codes after a fast Fourier transform (FFT). The spectral parameters, 

including THD, SFDR, SNR, and effective number of bits (ENOB), can be obtained by analyzing 

the spectrum of the collected digitized samples. The spectral testing setup of ADC is shown in 

Figure 2.1. Sine waves are commonly used in ADC spectral testing because the quality is relatively 

easy to establish [1]. Filters are optionally used to reduce the noise and harmonic distortion in either 
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the clock or the signal paths. To accurately test the spectral performance of an ADC, five conditions 

are needed for the conventional standard FFT testing method. First of all, the input sine wave should 

be pure enough to avoid having a distortion larger than the ADC. Second, the input signal should 

not exceed the full range (FR) of the ADC. If it exceeds the ADC’s FR, the phenomenon clipping 

happens, which results in spurs in the spectrum and large errors in spectral performance testing. 

Third, the input signal is coherently sampled, which means that the sampled points are exactly an 

integer number of the input periods. Moreover, the number of sampling cycles and the number of 

total sampling periods are mutually prime to ensure phase distinction. The fourth condition is that 

the jitter of the clock should be low enough to prevent jitter artifacts from affecting the measured 

noise floor. Finally, the data window should be long enough, and this is easy to satisfy in most 

testings. 

  Amplitude<Vref

݂݅

݂  jitter   coherent with+ݏ݂ ݅ 

 

Figure 2.1 Testing setup 

Built-in self-test (BIST) has been receiving attention in recent years [2–4] as it offers the 

stimulus and response verification capabilities for an on-chip test. This reduces the test cost and test 

time, as well as satisfies customers’ demand for higher performances of self-calibration. In BIST 

ADCS, controlling the frequency and amplitude of the input sine wave accurately is challenging. 

Traditionally, a frequency synthesizer is used to generate a desired frequency, which in itself is a 
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challenging task in a current on-chip design. In the other aspect, it is well-known that harmonics 

values are high-order nonlinear functions of the input amplitude. An ideal testing is to let the input 

signal cover exactly the full range of the ADC under test, and the amplitude of the input sine wave 

is equal to half of the ADC full scale (FS). In a bench test, precise and high-cost instrumentation is 

applied to adjust the input amplitude to approximately cover the full range of ADC without the 

clipping effect. Nevertheless, it is hard to implement on BIST. Deviation of the input amplitude and 

the FS of the ADC leads to either the input amplitude being much smaller than the ADC’s half FS, 

which causes the testing result not to be accurate, or the input clipped by the ADC, which causes 

spurs in the spectrum or testing result to be totally incorrect. An alternative approach to get the 

accurate spectral testing result is to apply an input covering slightly more than the FR of the ADC 

and eliminate the clipping effect to get the correct spectrum. 

In the current literature, several methods have been developed to get the correct spectral 

parameters using noncoherent sampled data. Windowing is a widely used technique to solve the 

noncoherency problem [5–7]. The combined windowing technique and interpolated FFT (IpFFT) 

was applied to low-resolution ADC testing [8]. However, the accuracy of IpFFT and windowing is 

not sufficient when the resolution of ADC is high or when the noncoherency is severe. In particular, 

the SNR error can be large. FIR was first proposed in [9]. It solved the noncoherency problem 

successfully, but the computing efficiency is low. [10, 11] improved the FIR method to make it 

more efficient and accurate. However, the noncoherent sampling methods are not intended to solve 

the simultaneous noncoherency and amplitude clipping problem.  

The problem of clipping was discussed in the recent past. Sine wave fitting algorithms and 

interpolation were often used to recover the clipped signal. A four-parameter sine fitting algorithm 
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was presented in [12] to measure the ENOB, especially when the amplitude of the sine wave was 

greater than the full-scale range of the DUT. [13] proposed an improved fitting of the fundamental 

output sine wave by eliminating clipped samples from the LS fit. The maximum likelihood method, 

which inherently eliminates distortions caused by clipping and incoherence, was described in [14], 

but its run time is much longer than that of the LS method. The efficiency of the sine fit method 

was improved in [15] by doing the fitting in frequency domain rather than in time domain. In [16, 

17] , the four-parameter sine fitting method was used to characterize ADCs and digital oscilloscopes 

for THD and ENOB. The sine fitting algorithm was accurate to estimate the fundamental and high-

order harmonics information of the ADC output. However, it is an iterative Newton-Gauss 

algorithm, which is time-consuming when the number of points used for fitting is large. And it 

cannot provide a correct SFDR when a nonharmonic spur contributes to SFDR. Oversampling and 

the interpolation method were proposed in [9, 18]. In this algorithm, the input signal was four times 

oversampled, and then interpolation was applied to fit and recover the clipped samples. Additional 

filters and clock signals were needed for another three branches, which increase both the chip area 

and the computing complexity.  

This chapter introduces a new accurate and efficient spectral testing method to replace the 

clipped and noncoherent fundamental component with an unclipped and coherent one when the 

ADC output is clipped and sampled noncoherently. This method can be used as a replacement of 

the standard FFT algorithm, which the test engineers are prevalently familiar with. Simulation and 

experimental results of different resolution ADCs demonstrate the accuracy of this method. The 

error of this algorithm increases with the clipping amount, which is justified with both theoretical 

analysis and simulation. The algorithm error is bounded quantitatively from mathematical 
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derivation. As clipping can be controlled in a small range, like 1% of the ADC input range, this 

algorithm can obtain correct spectral parameters. 

This chapter is organized as follows: Section II discusses the standard spectral testing 

method and the effect of clipping and noncoherency. In Section III, the proposed algorithm is 

described in detail to solve the clipping and noncoherency problem. Section IV presents the 

simulation results. Experiment results are described in Section V. Section VI discusses the accuracy 

of the algorithm versus the clipping amount. Finally, the chapter is summarized in Section VII. 

2.2 Standard Testing and the Effects of Clipping and Noncoherency 

2.2.1 Standard ADC spectral testing  

Let ( ) sin(2 ) osx t A ft V     be the input signal of an ADC, where A, f, , and Vos are the 

amplitude, frequency, initial phase, and offset of the input signal, respectively, and A is slightly less 

than or equal to half of the FS of the ADC. Let y[n] be the analog interpretation of the digital output 

codes converted by the ADC: 

2

[ ] sin 2 sin ( ) 0,1,2... 12
H

h os
h

h
s s

f
y n A n A V w n n M

f
hn

f f
   




   

        
   

   (2.1)    

The expression fs is the sampling frequency, ( )w n is the additive noise, Ah is the hth harmonic 

of the ADC output, H is the total number of harmonics, and M is the total number of sampling 

points. Three assumptions in practical ADC testing exists: (1) the setup of the ADC testing must be 

stationary with sufficient repeatability; (2) the ADC is “continuous,” meaning that 

( , , , , )h h os sA f A f V f , fh is continuous for all h; and (3) spectral performance is mostly dependent on A, 
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 f, and fs, which means , ,h h h

s

f f f

A f f

  
  

 are significant but 0h h

os

f f

V 
 

 
 

. An example spectrum of an ADC 

that is under standard testing is shown in Figure 2.2. 

Under coherent sampling, the window captured must be an exact integer number of periods. 

Let J be the total number of sampling periods, then M, f, fs, and J are related by (2.2): 

s

M f
J

f


                            (2.2)           

 

Figure 2.2 Spectrum of an ADC output under standard sampling 

If M is chosen to be a power of 2, then any J that is odd is mutually prime to M. Equation 

(2.1) can be represented as 

2

2 2
[ ] sin sin ( ) 0,1,2... 1

H

h

h h os

J

M

hJ
y n A n A n V w n n M

M

  


 
           
   

  (2.3) 

The spectral parameters can be accurately obtained by taking a discrete Fourier transform 

(DFT) of M coherently sampled data points y[n].  

    Applying a DFT to equation (2.3), the coefficient at index k is given by (2.4): 

21
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    It can be seen from (2.3) and (2.4) that, for coherent sampling, the effect of noise is neglected  
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[ ] [ ]
2 2

j j hhAA
Y J e Y hJ e                               (2.5)    

The power of input signal and high-order harmonics can be estimated as 

2 2
2 [ ] 2 [ ]sig hP Y J P Y hJ                     (2.6) 

For other k, Y[k] represents noise as it is neither fundamental nor harmonic, the total power 

of noise can be calculated as 

2

2
,

2,...,

[ ]
M

noise
k
k J hJ
h H

P Y k




                        (2.7) 

Spectral performance parameters can be calculated as 

 
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


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         
    

      
 
    
  
 





      (2.8) 

where SINAD is the signal-to-noise and distortion ratio. From (2.8), parameters such as SNR, THD, 

SFDR, and ENOB can be obtained from the spectrum of the ADC output. 

2.2.2 Issues with noncoherency and clipping 

1) Clipping 

As mentioned in Section I, from the point of view of the amplitude requirement, ideally, we 

hope the input signal exactly covers the FR of the ADC or is slightly less in the bench test. However, 

it is extremely hard to be implemented in BIST for (1) the ADCs’ full-scale range may vary slightly 

from one ADC to another, (2) when the sine source is fixed, the amplitude can change because of 

the nonstationary, and (3) the amplitude may not be equal to the designed value. 



www.manaraa.com

11 

 

 

 

Under these limits, if we apply an input with an amplitude that is slightly less than the half 

FS of the ADC, as both the input amplitude and the ADC FS vary, input between the minimum 

possible value of the ADC FS and the maximum possible value of the ADC input could cause the 

input to exceed the FS range of ADC, which is shown in Figure 2.3(a).  

 

 

 

 

 
 
 

 

Figure 2.3 Deviation of input amplitude and ADC FS 

 

Figure 2.4 Spectrum of an ADC output that is sampled noncoherently and with clipping 
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amplitude. If the input amplitudes are different, the corresponding spectral parameters obtained are 

various. In this case, the nonlinearity of the gap between the input and the FS of ADC is not tested. 

2) Noncoherency 

In practical testing, the coherent condition is extremely hard to achieve. For instance, when 

fs is 10 MHz, M is 2^14, and J is 2555, the input frequency must be 1559.4482421875 kHz. A 

frequency synthesizer is used to generate the accurate input frequency, which satisfies equation (2.1) 

for a given M, J, and sampling frequency, which is very challenging and unpractical for a BIST. If 

the coherent requirement is not satisfied, J is not an integer in the above equations such as (2.2) and 

(2.3). Let J=Jint + δ, where Jint is the integer part of J, δ is the fractional part of J, and 0.5 0.5   .  

We all know that even ppm-level noncoherency can cause frequency leakage in which some 

fundamental energy leaks into neighbor frequencies. Figure 2. 4 shows a spectrum when there are 

both fundamental skirting and higher harmonics’ spurs caused by both noncoherency and clipping. 

One cannot compute spectral performance from the spectrum directly. 

As described above, for BIST, applying a relatively small input can lead the testing result to 

be not accurate, while a large input leads to clipping, and coherency is a challenging and costly task. 

In this chapter, a pure sine wave is still applied to ADC testing. The jitter noise of the clock is 

controlled in a certain small range, and the number of captured points is larger, but the other two 

requirements of coherency and unclipping are being relaxed.  

 

2.3 The Proposed Algorithm 

In this section, a new method to get accurate spectral parameters is presented when the input 

signal is clipped and noncoherently sampled. The proposed algorithm is targeted to provide the 
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behavior and result that look like the standard FFT. From the discussion above, we know that 

clipping causes spurs in the spectrum and noncoherency results in power leakage in the fundamental 

harmonic, both of which conceal the high-order distortion. Our goal for this algorithm is to find an 

approach to remove the effect of power leakage and spurs from the spectrum. It has been proven 

that the error of harmonics in noncoherent sampling is mainly due to the noncoherency in the 

fundamental component [10]. Similarly, it can be assumed that the spurs in the clipping spectrum 

are mainly caused by the clipping of the fundamental component. The error due to the assumption 

is discussed in Section VI. In this method, the noncoherency and clipping problems are dealt with 

together rather than solving them one by one. In order to eliminate the effect caused by 

noncoherency and clipping, a clipped and noncoherent fundamental component, which is called 

nonideal fundamental in this chapter, is estimated from the sampled data sequence and replaced 

with a coherent and unclipped component, which is called ideal fundamental in this algorithm. 

2.3.1 Fundamental identification 

J is substituted to be Jint + δ in equation (2.3) under noncoherent sampling. Parameters A, 

Vos,  , Jint, and  need to be computed from the ADC output accurately to get the exact 

fundamentals. The procedure to estimate the five parameters is explained below. 

1) Estimate A and Vos 

In this algorithm, the amplitude and the offset of the fundamental harmonic are estimated 

from the number of clipping points [19]. Let Kt tell the number of clipping points at the top and Kb 

that at the bottom. Vref+ and Vref- are positive and negative reference voltages of the ADC. A and 

Vos can be estimated by the following equations: 
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

       (2.9) 

2) Estimate Jint and   

After A and Vos are obtained from the time domain data, Jint and the first-time estimation of 

  are obtained from the frequency domain. DFT is applied to the ADC output sequence y[n], and 

Jint is estimated from the index of frequency bin, which contains the maximum power, excluding 

the DC component in half spectrum. 

int 2 / 2
arg max [ ]

k M
J Y k

 
                          (2.10)    

  is the initial phase of the fundamental component of the sampling sequence. From 

equation (2.5), and substituting J = Jint + δ, the first-time estimation of   can be computed as 

int

int

int

1

int

int

int

int

int int

( [ ])
arctan

( [ ])

( [ ])
arctan

( [ ])

( [ ])
arctan

( [ ])

ˆ( [J ]) 0

ˆ ˆ( [J ]) 0 ( [J ]) 0

ˆ( [J

imag Y J

real Y J

imag Y J

real Y J

imag Y J

real Y J

if real Y

if real Y and imag Y

if real Y

 



 



 
  

 
 

   
 
 
  
 








 int int

ˆ]) 0 ( [J ]) 0and imag Y









  


         (2.11) 

3) Estimate δ and the fine estimation of   

After A, Vos, Jint, and initial   were obtained from steps 1 and 2, we apply a fine estimation 

of  and δ using least squares method to zero-crossing points of the ADC output in time domain. 

The approximate fundamental phase at each point can be described as 
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int

1

2
[ ]

yf

J
n n

M


  

                            (2.12)            

However, as the phase is computed directly from the noncoherent data, it does not represent 

the actual phase of the input sine wave or the phase of the first sampled point. In addition, δ needs 

to be calculated to get the actual frequency. In this method, the actual frequency and phase of the 

input sine wave are corrected from the set of zero-crossing points of the sampled points after the 

offset is removed. 

There are several approaches to selecting the fitting set of points, and the one chosen in this 

method is defined by 

[ ]
0.1

y k

A
                                (2.13)    

Neglecting high-order distortion and noise, the actual phase of those points can be described 

as 

 
2

[ ]
act

J
k k k I

M


                       (2.14)     

I is the set of all k’s that satisfy (2.13). The difference between the actual phase and the 

fundamental phase gives 

0

2
[ ] [ ]act yfk k k

M

                              (2.15) 

where 0  is the difference of the actual initial phase with the first estimation and δ is the fraction 

of the number of periods. 
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Figure 2.5 Least squares fitting line of the phase difference 

Fitting   Φ Φ [ ]act yfk k  with the index of k to a line using the least squares method, the 

estimated 0̂  and ̂  can be obtained from it. As shown in Figure 2.5, the sine wave consists of 

all the output points; the points on the straight line represent the phase difference of those zero-

crossing points. 

Then   and J are obtained 

int1 0 J J                                     (2.16) 

4) Fundamental error 

From the parameters obtained from the previous the steps, the noncoherent fundamental 

harmonic is written as 

2
[ ] sinˆ

nco

J
n n

M
yf A


 

 
  
 

                             (2.17)    

 Actually, as long as the testing is not coherent, the noncoherent fundamental component 

cannot be removed thoroughly as calculated in (2.17). Under this condition, there is still the 

fundamental effect in the residue if only (2.17) is removed from the output sequence. Assume that 

the error of the fundamental component can be written as 
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yfe n amp n
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 
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 

                          (2.18)     

The expression of ampe and e  can be obtained from Ref [20] (equations (22) and (23)). 

2.3.2 Clipping the fundamental component  

The nonideal fundamental component is constructed of two parts: the noncoherent 

fundamental component and the fundamental error. Being clipped by the full scale of the ADC, the 

nonideal fundamental is represented as follows: 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

nco nco

nid nco

nco

yf n yfe n Vref yf n yfe n Vref

n Vref n yfe n Vref

Vref n yfe n Vref

yf yf

yf

 

 

 

   

  

 







               (2.19) 

2.3.3 Constructing the new sequence 

When the nonideal fundamental component represented as (2.19) is subtracted from the 

sampling points, only the harmonics and noise distortion without noncoherence and clipping remain 

in the residue. We can add an ideal fundamental to the residue to get a new sequence. 

The ideal fundamental component is represented as (2.20) with parameters obtained from 

2.3.1. 

int2
[ ] sinˆ

id

J
n n

M
yf A


 

 
  
 

 
                          (2.20) 

After replacing the noncoherent and clipped fundamental component with an ideal one, the 

new sequence is used to analyze the spectral performance of the ADC. 

 ŷ[ ] [ ] [ ] [ ]nid idn y n yf n yf n                       (2.21) 

The proposed algorithm can be described as follows: 
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1) Collect M points of ADC output y[n]; M is power of 2. 

2) Count the number of clipped points; estimate A and Vos using equation (2.9). 

3) Perform DFT on y[n], get Y[k], calculate Jint, and initial estimate   using (2.10) and 

(2.11). 

4) Apply the LS method on zero-crossing points in (2.13). Get estimates of the exact J and 

  from (2.16). 

5) Calculate the fundamental error using equation (2.18). 

6) Clip the noncoherent fundamental, and get an unideal fundamental (2.19). 

7) Construct an ideal fundamental (2.20), and get the new sequence (2.21). 

8) Perform DFT to the new sequence to get a spectral performance. 

Remark: In the range of clipping amount discussed in this chapter, the influence of clipping 

on signal power and harmonics calculation is negligible, but its influence on noise is significant. 

The total noise power calculated from step 8 needs to be scaled up by multiplying
 t b

M

M K K 
. 

2.4 Simulation Result 

2.4.1 Functionality 

The proposed method of spectral testing with clipped and noncoherently sampled data has been 

validated to be true by simulation data generated in MATLAB. A 12-bit ADC with INL of 0.6 LSB, 

14-bit with INL of 0.5 LSB, 16-bit with 0.9 LSB, and 18-bit ADC with 1.2 LSB were modeled in 

MATLAB, respectively. The additive noise for each ADC is at the quantization noise level. Two 

kinds of input sine wave were converted into digital codes by each ADC under test, the one with 

the amplitude slightly less than half of the FS of the ADC and other one with an amplitude that 
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covers 1% more than the FR of the ADC. As space limitations, we only show the spectra of the 

testing results for the 18-bit ADC, while the test results of other ADCs are shown in Table 2.1.  

Table 2.1 Spectral parameters’ testing results of the proposed algorithm and standard 
method 

 12-bit ADC 14-bit ADC 16-bit ADC 18-bit ADC 

THD_id(dB) –80.4 –97.59 –99.74 –118.39 

THD_pro(dB) –81.24 –98.12 –99.44 –116.22 

THD_err(dB) –88.0 –106.9 –111.2 –120.3 

SFDR_id(dB) 82.95 100.11 101.25 119.54 

SFDR_pro(dB) 82.92 101.39 101.99 117.13 

SFDR_err(dB) –105.2 –106.1 –109.3 –120.8 

SNR_id(dB) 72.04 82.44 94.71 105.94 

SNR_pro(dB) 72.36 83.10 94.06 106.01 

SNR_err(dB) –83.4 –91.0 –102.6 –124 

ENOB_id(bit) 11.57 13.38 15.24 17.26 

ENOB_pro(bit
)

11.64 13.49 15.15 17.25 

ENOB_err(bit) 0.07 0.11 –0.09 –0.01 

 

 

Figure 2.6 Spectrum of simulation result: direct FFT on clipped and noncoherently 
sampled data 
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Figure 2.7 Proposed algorithm on clipped and noncoherently sampled data 

 

Figure 2.8 Spectrum of simulation result: direct FFT on unclipped and coherently sampled 
data 

Figure 2.6 shows the spectrum of direct FFT applied to the clipping and noncoherently 

sampled data. Spectral parameter values, including SNR, ENOB, THD, and SFDR, directly 

obtained from this spectrum are totally incorrect, which should be discarded. The spectrum of the 

clipped and noncoherently sampled data using the proposed method is shown in Figure 2.7, and the 

spectrum of straightforward FFT applied to the standard sampling data is shown in Figure 2.8. It 

can be seen from Figures 2.7 and 2.8 that the proposed method is capable of removing the clipping 

and power leakage effect. Standard algorithm can be used to obtain ADC specifications from the 

spectrum recovered by the proposed method.  

0 0.1 0.2 0.3 0.4 0.5

-150

-100

-50

0

Frequency(Fraction of f
samp

)

N
or

m
al

iz
ed

 p
ow

er
 d

B
)

 spectrum of clipped and non-coherently sampled data
using proposed method

0 0.1 0.2 0.3 0.4 0.5

-150

-100

-50

0

Frequency(Fraction of f
samp

)

N
or

m
al

iz
ed

 p
ow

er
 d

B
)

 spectrum of unclipped and coherently sampled data



www.manaraa.com

21 

 

 

 

The measurement results of THD, SFDR, SNR, and ENOB and the corresponding errors 

are shown in Table 2.1. In this table, X_id is the result of the standard method when applying direct 

FFT to the sampled data with the input signal amplitude slightly less than the full range of the ADC 

under test and is coherently sampled. X_pro is the result after applying the proposed method to the 

clipped and noncoherent data. X_err is the error between X_pro and X_id for THD, SNR, and 

SFDR. It is calculated as the power error of X_pro and X_id, and then it is converted in dBs units. 

ENOB_err is just the difference between ENOB_pro and ENOB_id. It can be seen that when 

applying the proposed method to the clipped and noncoherently sampled data, specifications such 

as THD, SFDR, SNR, and ENOB can be accurately estimated. 

2.4.2 Comparison with the state of the art 

The four-parameter sine fit method is an accurate method to get the spectral performance 

with clipped and noncoherently sampled data [12,13]. However, all unclipped points in data are 

considered to perform nonlinear least squares used for fitting, and the initial guess of the 

fundamental frequency must be accurate enough to get the convergence. After identification of the 

fundamental, the three-parameter sine fit will be applied to get information of high-order harmonics. 

The fundamental identification of the proposed method can also be replaced by the four-parameter 

sine fit. However, FFT and least squares fitting are the two most time-consuming blocks in the 

proposed method, where FFT is computationally efficient as the total number is chosen to be a 

power of 2, and the LS here is a linear fitting to a small set of data, which consumes a small amount 

of time. In another aspect, the proposed method does not need iterations to get high-order harmonics, 

and in the four-parameter sine fit method, the computation time increases as the number of 

computed harmonics increases. The following table is a comparison between the proposed method 
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and the four-parameter sine fit method (using MATLAB on a 64-bit Intel Core i5 CPU with 4 GB 

memory). The proposed method is accurate and more efficient than the four-parameter sine fitting 

method. The four-parameter sine fit method is also accurate on the estimation of SNR, THD, and 

ENOB, but it cannot estimate the correct SFDR value when SFDR is not determined by a harmonic 

spur. 

Table 2.2 Comparison of calculation time (16-bit ADC, INL = 0.9 LSB) 

M Proposed method Four-parameter sine fit  

213 0.003s >0.016s* 

*. Time taken to identify the fundamental. The three-parameter sine fit needs to be applied to calculate each harmonic. 

 

2.5 Experiment Results 

The proposed method of spectral testing with clipped and noncoherently sampled data has 

been validated to be true by simulation data generated in MATLAB. But in real testing, there are 

more unpredictable factors that cannot be simulated, and the ultimate application of this algorithm 

is experimental testing. This proposed method is validated by measurement data using a 16-bit SAR 

ADC. Two series of data were collected in a bench testing lab at the High-Precision Analog Division 

of Texas Instruments. One series is collected under the standard requirement: coherently sampled, 

the amplitude of the input signal is slightly less than the full range of the ADC. The values of THD, 

SFDR, SNR, and ENOB are used as reference values to verify the proposed method. The other 

series of data are collected noncoherently and with clipping ( = 0.155, clipping amount = 0.6%). 

Both direct FFT and the proposed method were applied to the series of data.  

All three spectra are shown in Figure 2.9. The proposed method is capable of removing the 
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skirting and clipping effect and producing a spectrum that is essentially the same as that of the 

standard sampling data. The parameters of THD, SFDR, SNR, and ENOB are shown in Table 2.3. 

It can be concluded that all errors of THD, SFDR, and SNR of the proposed method are small 

enough to be neglected. Hence, the condition for coherency and clipping is completely eliminated 

using the proposed method. 

 

Figure 2.9 Spectrum of measurement results: (1) direct FFT on clipped and noncoherently 
sampled data (green), (2) proposed algorithm on clipped and noncoherently sampled data (blue), 

and (3) standard method (red) 

Table 2.3 Testing results of a 16-bit ADC 

THD_id(dB) –105.78 SNR_id(dB) 95.84   

THD_pro(dB) –105.73 SNR_pro(dB) 95.82   

THD_err(dB) –125.14  SNR_err(dB) –119.59  

SFDR_id(dB) 109.70  ENOB_id(bit) 15.56   

SFDR_pro(dB) 109.91  ENOB_pro(bit) 15.55   

SFDR_err(dB) –122.89 ENOB_err(bit) –0.01 
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to deal with the noncoherency has been validated [12]. The relationship of the algorithm error and 

the clipping bound is discussed in this section. In the analysis, an input sine wave with the amplitude 

equal to half of the FS of the ADC is taken as the reference. The difference between the testing 

result of a clipped input signal and the reference is discussed with a different clipping amount. 

Let x(t) be the input signal of an ADC, and at t=nTs, the input voltage is ( )n sV x nT . The 

actual output code corresponding to Vn is described in (2.22), which contains two parts: the code 

error and the ideal output if there is no nonlinearity in the ADC under test: 

( ) ( ( ))

( ) ( )
n n n n os

n n n os n

C e C round G V w D

e C G V w D Q

   
    

                     (2.22)     

in which nw  is the additive noise at time nTs, G and Dos are the gain and offset of the testing ADC, 

round(x) is the ideal output code of the ADC with the input voltage x, ( )ne C is the code error at 

code Cn caused by the nonideality of the ADC, and Qn is the quantization error. For a given input 

signal, we can get a sequence ( )ne C , and it can be assumed that the relationship between the error 

code and the input voltage is fixed for a certain ADC. 

Assume that an input sine wave with the amplitude A equal to the ADC’s half FS is taken 

as the reference signal. When it is unfolded to half period, the expression can be written in (2.23), 

and the unfolded wave is shown as the solid line in Figure 2.10. 

 ... , 1, 1,
2 2 2

sin( )
n s

M M M
V A nT n                      (2.23)     

In this section, the sample index n is from 
2

M
  to 1

2

M
  to get the phase from 

2


 to 

2

 when all 

points are unfolded to half period. And under this condition, 
s

T
M


  . 
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In the other case, the signal with amplitude slightly larger than the full scale of the ADC is 

 ... , 1
'

, 1,
2 2 2

(1 ) sin( )n s

M M M
nV A nT                    (2.24)    

 is the overdrive ratio. Plug these two equations, (2.23) and (2.24), into the representation (2.22), 

and we get the code error sequences in both cases, which are 

)( ) ( sin( )n n s n os nC e C G A nT w D Q                            (2.25) 

' ' ' '( ) ((1 ) sin( ) )n n s n os nC e C G A nT w D Q                          (2.26) 

where ( )ne C  and '( )ne C  are shown in Figure 2. 10. It can be seen that for the clipped segment, 

'( )ne C  is all 0 as the input is clipped at the top or the bottom, where the output of the ADC is either 

0 or 2N–1 (N is the resolution of the ADC). In the proposed algorithm, an identified and clipped 

sine wave is subtracted from the clipped output codes. We assume that the sine wave is identified 

correctly. After the subtraction, the code error is given as 

' ' ' ' '((1 ) sin( ) ) ( )n n s os n n nC C G A nT D e C Gw Q                  (2.27)     

The code error for the reference signal is 

( )n n n nC e C Gw Q                             (2.28)    

In order to see how much error the clipping algorithm has, one can subtract the ideal error 

code from the clipped error code. 

' ' ' '( ( ) ( )) ( ) ( )n n n n n n n nC C e C e C G w w Q Q                  (2.29)     

When we do spectrum analysis, we want to know how much harmonic does this error cause. 

The second and third terms in (2.29) are additive noise and quantization error, which can be 

assumed as white, and are in the noise floor when doing DFT, so these two parts can be ignored. 
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The code error can be represented into a smooth component g(Cn ) plus a quantization 

component QE: 

( ) ( )n ne C g C QE                            (2.30)   

 '( )ne C  and ( )ne C  are similar to each other if the clipping amount is small; the Taylor series 

expansion to '( )ne C at code Cn is 

' ' '( ) ( ) ( ) ( )n n n ne C g C g C C QE                        (2.31)     

where   is a value between '
nC  and nC .  

Plug '( )ne C  and ( )ne C  to the equation of Δ, and now (2.29) can be written as 

'

' ' '

( )

( ) ( )
n n

n nn

e C V is clipped

g C C V is notclipped
    

                    (2.32) 

  

Figure 2.10 Different inputs and the code error  

The power of Δ is calculated as 
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e C K K g C C













        

       

  


              (2.33) 

' (1 ) sin( )n sV A nT    

( )
n

e C  

'( )ne C  

sin( )
n s

V A nT  



www.manaraa.com

27 

 

 

 

where Kt and Kb are the number of clipped points at the top and bottom, respectively, as mentioned 

in Section III. If the clipping ratio   is 1%, ( )t bK K  is 9% of M. As  2

max| ( ) |ne C  is at the THD 

level, the first term in (2.33)    2

max| ( ) |n t be C K K  is about 10 dB lower than THD. The value of the 

first term changes as the clipping ratio varies, but the quantitative value is fixed for a given ADC 

and the clipping ratio. 

As ( )ng C  is a smooth component of the code error at nC , the magnitude of ( )ng C is at THD 

level. The second term in (2.33) can be written as 

1 12 2' ' 2 ' 2

0 0

12' 2

0

1
2 2 2 2

0

2 2

| ( ) | max ( ) | ( ) | max ((1 ) sin( ) sin( ))

| ( ) | max ( sin( ))

M M

n n s s
n n

M

s
n

M

s s
n

g C C g A nT A nT

g A nT

THD T T n

THD

    

  

  

 

 

 









          

   

 

 

 







    (2.34) 

Take 1%  , for example. The second term in ( )P  is 30 dB lower than THD, which is 

much smaller than the first term and can be neglected. It can be concluded that the algorithm error 

is mostly from the clipped samples, and the error is quantitatively bounded for a given clipping 

amount. 

This is also verified with the simulation results using the 16-bit ADC modeled in MATLAB 

described in Section IV. A reference input signal is generated with the amplitude slightly less than 

the full range of the ADC, and it is sampled coherently by the ADC. All harmonics’ values are 

obtained by spectral analysis. Then a tested input signal with the amplitude overrange   is 

sampled by the ADC.  is from 0% to 5%. The distortion power difference between the tested 

signal and the reference signal are shown in Figure 2.11, where the value of the red line is obtained 
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from equation (2.33). As the clipping amount increases, the bound of harmonics’ error increases, 

and the error is bounded by equation (2.33). As the clipping amount can be controlled under a 

certain level, for example, 1%, the algorithm is accurate enough to obtain the correct spectral 

parameters. 

 

Figure 2.11 Algorithm error at different clipping amounts 

2.7 Conclusion 

An accurate and efficient algorithm was proposed for ADC spectral testing that allows an 

amplitude that is larger than a half FS and does not require coherency. This method relaxed two 

strict conditions in the standard spectral test and thereby makes the accurate spectral testing in BIST 

possible. Both simulation and experiment results showed that the proposed method is accurate when 

the output data are slightly clipped and noncoherently sampled. The measured parameters THD, 

SFDR, SNR, and ENOB were comparable to those from the standard testing. Theoretical derivation 

showed that the algorithm error increases with the clipping amount, and it was also validated by 

simulation results. Although the algorithm is not accurate when the clipping amount is large, severe 

clipping rarely occurs in testing. In future work, this method needs to be modified to get correct 

spectrum parameters when the clipping is severe. 
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CHAPTER 3. FAST COTEST OF LINEARITY AND SPECTRAL PERFORMANCE WITH 

NONCOHERENT SAMPLED AND AMPLITUDE CLIPPED DATA  

Production test is a significant contributor to the manufacturing cost for high-performance 

analog and mixed-signal products. The linearity test and the spectral test are two main categories 

in ADC testing, and the linearity test cost is usually the largest component in the test cost. For 

spectral testing, it is a very challenging task to precisely control the amplitude and frequency of the 

input sinusoidal signal. Overrange amplitude results in clipping ADC output, and noncoherent 

sampling results in spectral leakage. To reduce the ADC test cost dramatically, a new algorithm is 

proposed in this chapter. The new algorithm can simultaneously perform the linearity test and the 

spectral test with only one-time data acquisition. Targeted for realizing the cotest of linearity and 

spectral performance under noncoherent sampling and amplitude clipping, a new accurate method 

for identifying the noncoherent and clipped fundamental is introduced. The residue after removing 

the identified fundamental from raw data is used to obtain the linearity and spectral 

characterizations. Simulation and measurement results against the standard test methods collaborate 

to validate the accuracy and robustness of the new solution. 

3.1 Introduction 

The ADC is an important category in today’s semiconductor industry. Linearity testing and 

spectral testing of high-performance ADCs are two well-known challenging aspects in production 

test, and the test cost is meaningful to manufactures due to the large volume. The linearity test is 

related to the ADC’s static characteristics, such as integral nonlinearity (INL) and differential 

nonlinearity (DNL), where spectral testing of the ADCs is also called AC testing and includes 
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testing of the ADCs’ dynamic specifications, such as THD, SFDR, SNR, and so on. The linearity 

test is conventionally tested by the histogram method using either a pure sine wave or a very linear 

ramp or triangle wave as stimulus; whereas spectral performance is tested by the fast Fourier 

transform (FFT) method using a pure sine wave as input [1].  

The challenges and cost in accurate ADC testing come from two aspects: (1) testing setup 

and (2) data acquisition. In the testing setup, there are several challenging requirements [1, 2]: (1) 

the stimulus should be three to four bits more linear than the ADC under test; (2) the sampling clock 

timing must be precise, which means that the clock jitter should be low; (3) the sampling frequency 

and the stimulus frequency should be set to achieve coherency, which means that the collected data 

must have exactly integer cycles of input signal; and (4) the input amplitude is set to let the input 

signal be in the ADC’s full range. Usually, it is challenging to achieve precise control over the 

frequency and amplitude of the tested sinusoidal input signal. Either the instrumentations are 

expensive for precise control, or the adjusting is time-consuming to satisfy the ideal testing 

requirements. And data acquisition is more time-consuming in linearity testing than in spectral 

testing. The histogram test is the standard and conventional test method for the linearity test [3–5] . 

It usually collects hundreds of hits per code to calculate INL and DNL. The data acquisition time is 

considerably large for high-resolution ADCs. 

Researchers have worked on methods to relax the requirements described above to reduce 

the test cost. For spectral testing, methods have been proposed to obtain accurate spectral 

specifications with relaxed requirements. Several accurate and robust methods have been developed 

to deal with the noncoherency issue [6, 7]. Li et al. proposed an efficient spectral testing method 

with noncoherent and clipped data based on fundamental replacement [8, 9]. However, the accuracy 



www.manaraa.com

33 

 

 

 

and clipping range is limited. Siva et al. proposed an accurate full-spectrum test method, FERARI, 

which is robust to simultaneous noncoherent sampling and amplitude clipping [10]. This method is 

accurate and robust in spectral testing, but the estimation accuracy of the fundamental is limited, 

and it cannot be used in the linearity test.  

Many researchers have proposed methodologies to reduce ADC linearity test time. Overall, 

linearity test results are obtained from combining low-code and high-code frequency tests [11]. The 

paper in ITC 2012 [12] proposed an efficient linearity test method that dramatically reduces the 

data acquisition time by more than 100 times while maintaining the same and even better test 

precision. This method is efficient and accurate, but it has a requirement on the data acquisition that 

the input signal must be sampled coherently and without amplitude clipping. It is known that 

coherency is a challenging condition to achieve in production test. If the input amplitude is set to 

be relatively small to avoid clipping, a large number of codes can be untested.  

This chapter proposes an efficient cotest method for simultaneous linearity test and spectral 

test. Using this method, only one sequence of ADC output data needs to be collected with about 

one hit per code to obtain both linearity and spectral characteristics. This method also relaxes the 

requirements on noncoherency and clipping. With the proposed method, the noncoherency can be 

at any level. The input overrange is limited to 3% of the full range of ADC. This is a valid and 

practical limit for production test as the amplitude of the input signal to the ADC can be controlled 

up to 3% without any challenges. The proposed method involves accurate estimation of the 

fundamental component and later subtracts the estimated fundamental from the output of the ADC 

to obtain the residue. On the one hand, the residue of the unclipped ADC output is used to estimate  
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the INL and DNL of the ADC. On the other hand, the residue is interpolated to a new coherent and 

unclipped fundamental to obtain accurate information of the ADC’s harmonics and noise. 

The remainder of the chapter is presented as follows: In Section II, a brief overview of an 

efficient linearity test algorithm and spectral testing with noncoherent sampling and clipping is 

presented. In Section III, a new method is proposed that can accurately estimate both linearity and 

spectral characteristics when the ADC output is simultaneously clipped and noncoherently sampled. 

In Section IV, simulations are presented showing the accuracy and robustness of the proposed 

method. In Section V, measurement results are shown to validate the functionality of the proposed 

method, and Section VI concludes the chapter. 

3.2 Problem Statement 

An efficient linearity test algorithm was proposed in [12], which can maintain the same and 

even better test precision with 100 times less data than the conventional method. The efficient 

linearity test algorithm is based on an assumption that for an N-bit ADC, all the INL/DNL errors 

are highly correlated and are deterministic functions of a much smaller number of independent 

errors (component size error, parasitic, voltage coefficients, etc.), which is true for most of the ADC 

architectures except for flash ADCs and sigma-delta ADCs. The INL curve was modeled as a 

“segmented nonparametric” model that contains the most significant bytes (MSB) segment, 

intermediate significant bytes (ISB) segment, and least significant bytes (LSB) segment. The 

algorithm and its limitations are discussed in the following part of this section. 

The algorithm in [12] is described as follows: 

1) With pure sine input, collect coherent ADC output data set yn, n=1,2,3...M. 
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2) Perform FFT on yn, obtain Yn in the frequency domain, set the fundamental and DC 

component Yfund and YDC to be 0, and then the frequency domain residue is Yen. 

3) Calculate the residue power Pe. 

4) If Pe is excessive, bad ADC, stop. 

5) If Pe is not excessive, apply IFFT to Yen to obtain the time domain residue yen. 

6) At each (yn, yen) pair, write yen=EMSB(CMSB)+EISB(CISB)+ELSB(CLSB)+noise, where CMSB, 

CISB, and CLSB are the corresponding MSB, ISB, and LSB codes for each yn. 

7) Identify EMSB(CMSB), EISB(CISB), and ELSB(CLSB). 

8) Construct INL(k) and DNL(k) for all code k; k is from 0 to 2N for an N-bit ADC. 

There are two requirements on the setup of the efficient linearity test method: (1) the range 

of the input must be smaller than the full range of the ADC under test, and (2) the input signal must 

be sampled coherently. Figure 3.1 (a) shows an ADC output spectrum when the input is in the 

ADC’s full range and sampled coherently. The total number of sampled points is M=65536, and the 

number of periods of the output is J=4357, which is an integer and prime to M, satisfying the 

coherency condition. If we follow common industry practice and select the input at about 0.25 dBFS, 

the input range is a little bit smaller than the ADC’s full range to avoid clipping. Once the 

fundamental and DC the component are set to be 0 (the power is set to be 0), the rest of the spectrum 

contains the information of harmonics and noise. Applying steps v–viii of the efficient linearity 

algorithm to the spectrum residue, INL and DNL of the ADC under test can be obtained. 

Although the first requirement of the amplitude was not stated in the chapter, it is actually 

a default requirement in the implementation of the algorithm in [12]. If the input range exceeds the 

ADC’s full range, the ADC output can be clipped, and there are high spurs in the ADC output 

spectrum. However, clipping is unavoidable if one wants to test the nonlinearity for all the ADC 

codes. If the input range is smaller than the full range of the ADC under test, as shown in Figure 
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3.2(a), there are a lot of codes untested in the two ends (near code 0 and code 2N–1 for an N-bit 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.1 Spectra of the ideal ADC output (a), clipped ADC output (b), noncoherent 
output (c), and both clipped and non-coherent output (d) 
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ADC). Although in [12] the nonlinearity for all the codes are not necessarily required to obtain the 

INL and DNL curves, the nonlinearity of codes in the two ends needs to be extrapolated from the 

nonlinearity of codes covered by the input, which can decrease the accuracy of the method. If the 

amplitude of the input is increased to let the input range be slightly less than the full range of the 

ADC, the input signal can still be clipped as (1) the variation of the full range between ADC to 

ADC, (2) nonstationary of the input, and (3) the noise issue [9]. All these issues cause the problem 

where the amplitude is challenging to control precisely in the testing setup. Figure 3.1(b) shows a 

spectrum when the ADC output is clipped by the ADC’s full scale (2% overrange). Compared with 

the correct spectrum in Figure 3.1(a), spurs are increased in the spectrum shown in Figure 3.1(b). 

Not only are spectrum specifications obtained from this spectrum not correct, but also INL and 

DNL cannot be estimated correctly from this ADC output. 

It is well-known that coherency is another condition that is hard to achieve. And for high-

performance ADCs, even slight noncoherency can cause the spectrum to be totally corrupted. 

Figure 3.1(c) shows the spectrum of the noncoherent ADC output. It can be seen that the power of 

the fundamental leaks to neighbor bins and masks the information of harmonics and noise. Figure 

3.1(d) shows the spectrum of the ADC output with simultaneous noncoherency and amplitude 

clipping. 

It can be concluded that noncoherency and amplitude clipping are two important issues in 

both ADC spectral and linearity testing. A method that can dramatically increase the linearity test 

efficiency was introduced, but it requires coherency and no amplitude clipping. There is a method 

for spectral testing that can relax the two requirements [10]. The idea of noncoherency and 



www.manaraa.com

38 

 

 

 

amplitude clipping can be applied to the linearity test if the accuracy in the fundamental estimation 

can be increased. And this will be discussed in the simulation result section.  

The method proposed in this chapter can efficiently obtain the spectral and linearity 

performance using one sequence of ADC output data and can simultaneously relax the requirements 

on coherency and amplitude. Spectral and linearity characteristics can be obtained accurately and 

efficiently even using imprecise instrumentations.  

(a) 

 

(b) 

Figure 3.2 ADC output when the input range is smaller(a) or lager (b) than the ADC’s full 
range 

3.3 Proposed Method 

In the proposed method, the ADC under test is tested using a pure input sine wave slightly 

exceeding the ADC’s full range, and it is sampled noncoherently. The noncoherent and clipped 
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fundamental is first identified using four-parameter sine wave fitting (FPSF) method, which is 

robust and accurate. Then the noncoherent and clipped fundamental is subtracted from the ADC 

output, leaving the residue containing information of the harmonics and noise. 

The residue of the unclipped ADC output is interpolated to an ideal fundamental, which 

contains the integer number of cycles, and its range is in the ADC’s full range. By adding the 

interpolated information of harmonics and noise to the newly constructed coherent and unclipped 

fundamental, a new sequence is obtained. Spectrum is obtained by applying DFT to the new 

sequence to estimate the spectral specifications. The residue of the unclipped points is used to 

estimate the INL and DNL for the full codes. 

Let the input of the ADC be Vin(t)=Acos(2πft+ϕ)+Vos, where A, f, ϕ, and Vos are the 

amplitude, frequency, initial phase, and offset of the input signal, respectively. Let y[n] be the digital 

output codes converted by the N-bit ADC under test: 

cos(2 ) . [ ]

[ ] 0

2 1

A os
s ref in ref

in ref
N

in ref

f
C n h d w n C

f V V V

y n V V

V V

 
 





       
  


              (3.1)  

In equation (3.1), CA and Cos are the amplitude and offset of the ADC output; fs is the 

sampling frequency; h.d is the high-order harmonics
2

cos(2 )
H

Ah hh
s

f
C n

f
 


 ; H is the number of 

harmonics; and w[n] is the summation of additive noise and quantization noise, n=0,1,2…M–1; and 

M is the total number of sampled points, which is usually selected to be the power of 2 for the 

efficiency of FFT. V+  
ref and V-   

ref  are the top and bottom reference voltages of the ADC under test, 

respectively. Let J be the number of ADC output periods and f/fs×M=J. J is an integer if the input 
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is sampled coherently and y[M]=y[0]; otherwise, it is noncoherently sampled. In this chapter, J can 

be a noninteger. The following steps show the details of the proposed method to estimate linearity 

and spectral specifications from clipped and noncoherent y[n]. 

3.3.1 Fundamental Identification 

The FPSF method is a standard and accurate method for fitting digitized waveform data to 

a sine wave [1]. In ADC testing, it can be used to identify the fundamental and high-order harmonics 

even under noncoherent condition. Because of space limitations, the details of the sine wave fitting 

method are not discussed here. 

In the general sine wave fitting method, all points in the digitized waveform are used for the 

fitting. However, in this chapter, any ADC output that exceeds the valid code range should be 

excluded from the fitting. Formula (3.2) describes the index of the ADC output used for the sine 

wave fitting. In this equation, Cmin is the minimum valid code. It can be 0 or hundreds to thousands 

LSBs larger than 0. Cmax is the maximum valid code, and it can be 2N–1 or hundreds to thousands 

LSBs less than 2N–1. The selection of Cmin and Cmax depends on the architecture of the ADC under 

test, as long as the linearity of codes between Cmin and Cmax is guaranteed. If the manufacturer does 

not care about the linearity of codes exceeding the range of (Cmin, Cmax), the proposed method in 

this chapter does not need to include them. In this chapter, to show how to construct the linearity of 

the whole code range (0,2N–1), we set Cmin=0 and Cmax=2N–1, respectively. 

 min max| [ ]sfn n C y n C                                  (3.2) 

Pairs of (y[nsf],nsf) are used for the sine wave fitting to obtain the fundamental of the ADC 

output expressed as equation (3.3). 
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ˆˆ ˆˆ ˆ[ ] Bcos( ) Csin( )fy n n n D                                 (3.3) 

B̂ , Ĉ , ̂ , and D̂  in equation (3.3) are the four parameters of sine wave estimated from the 

FPSF method. 

3.3.2 Residue Information 

After the fundamental is obtained from Section III.A, it is subtracted from the ADC output 

codes, and the residue including harmonics and noise are left. As the clipped points do not have 

information of the AC property, they are excluded for the following processing. The indexes of the 

unclipped points are                        

 | 0 [ ] 2 1N
ncn n y n                                       (3.4) 

And residues of the unclipped points are                           

[ ] [ ] [ ]e nc nc f ncy n y n y n                                      (3.5) 

3.3.3 Linearity Test 

Now that the pairs of ADC output error and output codes (ye[nnc],y[nnc]) are obtained, the 

algorithm of the efficient linearity test can be slightly adjusted to estimate the linearity of the ADC 

under test. 

The number of MSB, ISB, and LSB segments—ms, mi, and ls—is determined first 

according to the principles in [12]. For example, the segments of ms-mi-ls can be 6-6-6 or 7-6-5 or 

other combinations for an 18-bit ADC. The MSB codes CMSB are from 0 to 2ms–1, ISB codes are 

from 0 to 2mi–1, and LSB codes are from 0 to 2ls–1. For an ADC output code, it can be split as the 

combination of the MSB code, ISB code, and LSB code. For example, the binary form of a decimal 

ADC output code 210823 is 110011 0111100 000111, and then CMSB=(110011)b=51, 
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CISB=(011110)b=30, and CLSB=(000111)b=7 if ms=6, mi=6, and ls=6. As we have pairs of 

(ye[nnc],y[nnc]), and for each code y[nnc], the error can be written as    

[ ] ( ) ( ) ( ) [ ]e nc MSB MSB ISB ISB LSB LSB ncy n E C E C E C w n                       (3.6) 

In equation (3.6), nnc is the index described in formula (3.4), and EMSB(CMSB), EISB(CISB), 

and ELSB(CLSB) are the error of the MSB, ISB, and LSB segment at CMSB, CISB, and CLSB of nnc. 

Now the total number of parameters of the error term is kp=2ms+2mi+2ls, but the number of equations 

like (3.6) are far more than kp. Least squares is used to solve the parameters of EMSB, EISB, and ELSB. 

Then the INL curve is constructed from them. For code C, its CMSB, CISB, and CLSB are first 

determined, and then         

[ ] [ ] [ ] [ ] 0,1, 2...2 1N
MSB MSB ISB ISB LSB ISBINL C E C E C E C C                    (3.7) 

When the INLs of codes 0 to 2N–1 are obtained, the INL curve can be obtained and the DNL 

curve can also be computed. 

3.3.4 Spectral Test 

In this section, we create a coherent and unclipped fundamental and interpolate the residue 

obtained from Section III.B to the new fundamental to get a new sequence consisting of the coherent 

and unclipped fundamental and interpolated error. By analyzing the spectrum of the new sequence, 

the specifications of the ADC under test can be obtained. 

The noncoherent fundamental obtained from equation (3.3) is clipped to get the noncoherent 

and clipped fundamental as shown in equation (3.8):  

ˆˆ ˆˆ ˆBcos( ) Csin( ) 0 [ ] 2 1

[ ] 0 [ ] 0

2 1 [ ] 2 1

N
f

f f
N N

f

n n D y n

y n y n

y n

      


 
   

                     (3.8) 
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The unclipped part can be written as equation (3.9):        

  2 2
ˆ

ˆˆ ˆ[ ] cos 2 'f

J
y n B C n D

M
 

 
     

 
                          (3.9) 

In equation (3.9), 1
ˆ

' tan
ˆ

C

B
   
   

 
 if ˆ 0C   and 1

ˆ
' tan

ˆ
C

B
   
    

 
 if ˆ 0C  , and Ĵ  is the 

number of periods of the ADC output. It is obtained by 
ˆˆ
2

M
J





 . As the ADC is sampled 

noncoherently, Ĵ  is not an integer. Let the integer part of Ĵ be Jint. Next, we construct a coherent and 

unclipped fundamental with Jint, ' , and a new amplitude 'A . Here 'A  is selected to let the range 

of the new fundamental be at about –0.25 dBFS of the whole ADC output code range (0,2N–1). The 

new coherent and unclipped fundamental can be written as    

              ' int[ ] 'cos 2 'f

J
y n A n

M
    

 
                     (3.10) 

The original ADC output y[n], residue ye[n], and new fundamental ' [ ]fy n  are folded into 

one cycle, respectively, according to their phase so that y[n] and ' [ ]fy n  can be separated into points 

in the falling edge (marked as f) and rising edge (marked as r) as shown in Figure 3.3. The error 

yef[n] in the falling edge yf[n] is interpolated to fundamental in the falling edge ' [ ]ffy n  to get the 

new error ' [ ]efy n , and it is the same for the rising edge. 

Equation (3.11) shows the interpolation of the new error at code ' [ ]ffy n  at the falling edge: 

 ' '
[ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ]

ef ef
ef ef ff f

f f

y b y a
y n y a y n y a

y b y a


  


                 (3.11) 
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Figure 3.3 Interpolation of the unclipped residue 

In equation (3.11), a and b are the indexes of the new fundamental at the falling edge. [ ]fy a  

is the minimum code, which is larger than ' [ ]ffy n , and [ ]fy b  is the maximum code, which is smaller 

than ' [ ]ffy n . The error in the rising edge ' [ ]ery n  can also be estimated in the same way. When ' [ ]ffy n  

and ' [ ]ery n  are obtained, they are unfolded to Jint cycles according to the phase of ' [ ]fy n . When the 

interpolated error ' [ ]ey n  is estimated, the new sequence consists of the unclipped and coherent 

fundamental and interpolated error (harmonics and noise): 

' ''[ ] [ ] [ ]f ey n y n y n                               (3.12) 

DFT is performed to the new sequence to obtain the accurate spectral characteristics. 
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Figure 3.4 shows the flowchart of the proposed algorithm in the cotest of linearity and 

spectral performance. 

 

Figure 3.4 Flowchart of the proposed method 

 

3.4 Simulation Results 

The proposed method of the cotest of spectrum and linearity with clipped and noncoherently 
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sampled data is validated by simulation data generated in MATLAB. An 18-bit SAR ADC was 

modeled with mismatches in the charge capacitors in MATLAB as the capacitor mismatch is the 

main error source in the SAR ADC. And the error source from other aspects is covered in the 

measurement result. The additive noise to the input is 1 LSB. Two sets of input sine wave were 

converted into digital codes by the ADC under test: one in the full range of the ADC and coherently 

sampled is set as the reference, and the other one with an amplitude that covers 2% more than the 

full range of the ADC is noncoherently sampled. The total number of sampled points is 262,144 for 

each set, which is approximately one hit per code.  

It needs to be stated how we select the test frequency for the cotest of linearity and spectral 

performance in the proposed method. In common practice in the industry, the linearity is usually 

tested at a low frequency. The spectral characteristics are usually tested at one typical frequency, 

which is usually around 1/10 of the Nyquist frequency. So in the simulation section, we select the 

input signal with a frequency at about 1/20–1/10 of the Nyquist frequency to test the linearity and 

spectral performance simultaneously. 

3.4.1 Spectral Test 

The spectra of the raw ADC output data from the two inputs are shown in Figure 3.5 (the 

blue spectrum is that of the reference, and the green one is the spectrum of the noncoherent and 

clipped ADC output). It can be seen that there are power leakage and increased spurs in the green 

spectrum. Spectral parameter values, including SNR, THD, and SFDR, directly obtained from this 

spectrum are totally incorrect, which should be discarded. Spectral parameters obtained from the 

reference spectrum (blue) are shown in Table 3.1.  
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Figure 3.5 Spectra of the coherent and unclipped ADC output (blue), the noncoherent and 
clipped output (green), and the proposed noncoherent and clipped output (red) 

Table 3.1 Spectral performance from the reference method and the proposed method (unit 

dBs) 

 SNR THD SFDR 

Reference 98.87 –117.15 120.22 

Proposed 98.67 –117.67 120.65 

 

Applying the proposed method to the clipped and noncoherent ADC output, the new 

spectrum is shown as the red one in Figure 3.5. It can be seen that the power leakage and spurs are 

totally removed and the spectrum is identical with the reference one. It can be concluded that the 

proposed method is capable of removing the clipping and power leakage effect. The spectral 

parameters estimated from the proposed method are also shown in Table 3.1. It can be seen that 

when applying the proposed method to the clipped and noncoherently sampled data, specifications 

such as THD, SFDR, and SNR can be accurately estimated. 

3.4.2 Linearity Test 

The true INL of the ADC extracted from the ADC model is used as the reference. Once the 

ADC is generated, each and every code transition voltage is found using a binary search, similar to 

the standard servo loop method. From the true transition voltages, the true INL/DNL can be  
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Figure 3.6 True INL (blue), INL from the histogram method (red), and INL from the 
proposed method (green) 

 
(a) 

 
(b) 

 
(c) 

Figure 3.7 Accuracy of amplitude (a), offset (b), and frequency(c) 
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computed. Also, the histogram method is used to test the INL for comparison. In this simulation, 

the number of hits per code of histogram is set to be 128. Figure 3.6 shows the INL of the ADC 

under test: true INL (blue), INL from the histogram method (red), and INL from the proposed 

method (green). It can be seen that the true INL lies in the middle of the INL from histogram and 

the proposed method, and the noise band of the proposed method is smaller than that of histogram, 

but it only uses data 128 times less than that of the histogram method. 

3.4.3  Estimation Accuracy  

The accuracy of the proposed method in fundamental estimation is compared with that of 

the FERARI method. One hundred sets of sine wave with randomly generated amplitude, offset, 

and frequency are used, converted by the ADC modeled in the beginning of this section. These 

amplitude, offset, and frequency values are recorded as the true values for reference. Parameters 

obtained from the proposed method and the FERARI method are compared in Figure3.7. The error 

is calculated as estimated true

true

X X

X

 , where X is the amplitude, offset, or J (total number of periods, can 

represent input frequency). Based on the test result, the accuracy of the proposed method is several 

orders higher than that of the FERARI method. 

3.4.4  Robustness Test 

The robustness of the proposed method is shown with respect to noncoherent sampling and 

amplitude clipping up to 3%. Two hundred 18-bit SAR ADCs were generated in MATLAB with 

random capacitor mismatch. The true INL of each ADC were obtained from the mismatch of the 

capacitors, and the true THD and SFDR were obtained using the standard DFT method under 

coherent sampling and no amplitude clipping, whereas the proposed INL, THD, and SFDR of each 
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ADC were obtained using input signal with randomly selected values of δ and overrange. The 

values of δ vary from –0.5 to 0.5 (total range), and overrange percentage was in the range 0 to 3. 

The data record length for each run was 65536.  

Figure 3.8 shows the relationship between INL obtained from the proposed method and the 

true INL of the ADC under test. Figure 3.9 shows the relationship of the proposed THD and SFDR 

and these parameters from the standard DFT method. The fitting line of the proposed parameter 

(INL, THD, or SFDR) versus the true parameter is a straight line with a slope of 1. This shows that 

the method is accurate and robust to both noncoherent sampling and amplitude overrange up to 3%.  

 
   (a)                                              (b) 

Figure 3.8 The proposed maximum INL versus the true maximum INL (a) 

The proposed minimum INL versus the true minimum INL (b) 

 
        (a)                                                  (b)              

             

Figure 3.9 The proposed THD versus the true THD (a), the proposed SFDR versus the 
true SFDR (b) 
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3.5 Measurement Results 

The proposed method of the cotest with clipped and noncoherently sampled data has been 

validated to be true by simulation data generated in MATLAB. But in real testing, there are more 

unpredictable factors that cannot be simulated, and the ultimate application of this algorithm is 

experimental testing. This proposed method is validated by measurement data of an unreleased part 

(18-bit ADC) of the new ADC product from an R&D group in a leading semiconductor company. 

Three sets of data are taken from the R&D group: (1) INL curve tested using the histogram method 

with 128 hits per code; (2) a sequence of ADC output with coherent sampling and amplitude 

clipping, the total data length being 262,144; (3) a sequence of ADC output with noncoherent 

sampling and amplitude clipping, the total data length being 262,144.  

Table 3.2 Test result of the measurement result (unit: dBs) 

 SNR SFDR THD 

Reference 97.24 118.35 –
116.20 

Proposed 97.13 116.28 –
115.85 

 

 

Figure 3.10 Spectra of the reference (blue), noncoherent and clipped output (green), and 
the proposed method on noncoherent and clipped output (red) 
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3.5.1 Spectral Test  

Applying the FERARI method to data sequence 2 described in the last paragraph, the 

spectrum and spectral performance are taken as a reference for spectral testing. Figure 3.10 shows 

the spectra of reference, noncoherent and clipped data, and application of the proposed method to 

the noncoherent and clipped data. The noncoherency and clipping effect has been removed by the 

proposed method. Table 3.2 shows the spectral performance using the proposed method on 

noncoherent and clipped data, and from the reference method, it can be seen that the estimation of 

spectral performance is accurate. 

 

 

Figure 3.11 Measurement results comparing the INL of an 18-bit SAR ADC using the ramp 
histogram method with 128 hits/code against the INL of the proposed method using an average of 

1 hit/code 

3.5.2 Linearity Test  

The reference INL of the ADC under test is obtained from the ramp histogram test with 128 

hits per code, which is shown as the blue dots in Figure 3.11. The red dots are the INL obtained 

from the proposed method with one hit per code and with noncoherency and amplitude clipping. It 

can be seen that the red dots lie right near the center of the blue dots’ noise band, and the proposed 

method has better precision than the histogram method. 
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3.6 Conclusion 

A new test method that efficiently and accurately estimates the linearity and spectral 

characteristics of an ADC with noncoherent and overrange input was proposed. This method greatly 

reduces the data acquisition time and makes the full-code linearity test possible. It relaxes the 

requirement on precise control over frequency and amplitude of the input signal for spectral testing 

and makes it possible for the cotest of linearity and spectrum from one sequence of data. To identify 

the noncoherently sampled and overrange fundamental, a new and accurate fundamental 

identification method was proposed. The residue obtained after subtracting the estimated 

fundamental from the collected data was used to calculate the linearity characterization and 

interpolated to an ideal fundamental to obtain accurate spectral results. The accuracy and robustness 

of the proposed method was validated by both simulation results and measurement results. The 

proposed method is especially suitable for applications where it is challenging to obtain precise 

control over frequency and amplitude of test signal. Accordingly, the test cost and test time are 

reduced dramatically. 
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CHAPTER 4. ACCURATE AND EFFICIENT METHOD OF JITTER AND NOISE 

SEPARATION AND ITS APPLICATION TO ADC TESTING 

Jitter is a crucial factor in high-speed and high-performance ADC testing. This chapter 

proposes an efficient and accurate jitter estimation method based on one frequency measurement. 

Applying a simple mathematical processing to the ADC output in time domain, the RMS of jitter 

and noise power are obtained. Furthermore, prior information of harmonics need not be known 

before the processing. The algorithm is robust enough that nonharmonic spurs do not affect the 

estimation result. Using the proposed algorithm, specifications of the ADC under test can be 

obtained without the jitter effect. Simulation results of ADCs with different resolutions show the 

functionality and accuracy of the method. 

4.1 Introduction  

The ADC is one of the important categories of mixed-signal products. Accurate and efficient 

testing of high-performance ADCs is a challenging task in the modern industry as the speed and 

performance of the ADC are increased dramatically. Spectral testing, also known as AC test, is 

related to the ADC’s dynamic performance, including SNR, THD, SFDR, and so on. The challenges 

and test cost of spectral testing come from the following aspects [1]: (1) low-distortion stimulus, 

(2) coherency between input frequency and sampling frequency, (3) stationarity of reference, and 

(4) clean sampling clock. 

 Jitter, which is defined as the variation in the sampling instant, is an important specification 

in high-speed analog-mixed signal devices. Deterministic jitter (DJ) and random jitter are two 

categories of jitter [2]. As the increase of frequency and data rate, jitter can be the ultimate limit of 
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the performance in some applications. In ADC testing, jitter plays a crucial role as the SNR 

decreases as the sampling rates or input frequency increases with uncertainty in the sampling clock. 

Clock jitter, as well as the ADC’s intrinsic noise, increases the noise floor of the ADC output 

spectrum. It is necessary to accurately separate jitter from the ADC intrinsic noise to get the true 

ADC performance.  

Many researchers have proposed methodologies to test the ADC accurately and efficiently 

even under a nonideal testing environment. With a known impure source, high-resolution ADC 

spectral specifications were obtained under a noncoherent sampling condition [3]. An accurate 

ADC testing method with noncoherently sampled data was proposed in [4]. A testing method was 

introduced in [5] when the input amplitude is clipped. Conventional jitter measurement methods 

apply two inputs with sufficient separate frequencies with the ADC under test to calculate the jitter 

information [1,6,7]. The dual-frequency method increases the test cost as the requirement of the 

signal generator and synthesizers are high for the ATE test. And for the SoC test, the two frequency 

methods increase the test cost because the low-frequency on-chip test needs a large die area for 

capacitors. An FFT-based jitter separation method was proposed to separate random jitter and 

deterministic jitter [2]. An analytical method was proposed to extract the instantaneous and RMS 

sinusoidal jitter from phase-locked loops (PLL) output [8]. In ADC testing, the summation of 

quantization noise is the noise that needs to be estimated in calculating the specification SNR. 

Random jitter affects the ADC output as well as the noise, and it cannot be estimated from the 

methods listed above. A fast and accurate jitter and noise measurement method with one frequency 

test signal was proposed in [9]. By setting a certain number of harmonics of the ADC output to be 

zero in the frequency domain, the residue of the ADC output was separated to be two sets with 
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different jitter powers. The RMS of jitter was obtained by processing the two sets of data. This 

method is accurate and efficient in jitter estimation. However, it requires knowing the number of 

harmonics before setting them to be zero, and nonharmonic spurs affect the test result. 

This chapter proposes a new method to accurately measure jitter and noise power based on 

one frequency measurement, and it does not require prior knowledge of harmonics. Moreover, 

compared with [9], the accuracy of the proposed method is not affected by nonharmonic spurs. And 

this algorithm can separate jitter and noise through a simple mathematical processing, which is 

much more efficient than any other method. With this method, the correct spectral performance of 

the ADC under test can be obtained even using a sampling clock with random jitter. This method 

relaxes the requirement of the sampling clock and then reduces the test cost, making it possible to 

test an ADC using an imprecise instrument. 

This chapter is organized as follows: In Section II, the jitter effect on ADC spectral testing 

is introduced. Section III proposes the new method to estimate jitter noise. Section IV shows the 

simulation results and accuracy of the method. The last section concludes the result. 

4.2 Problem Statement 

The ADC spectral testing is usually implemented by applying a pure sine wave to the device 

under test (DUT) and using FFT to analyze the output codes. Parameters such as THD, SFDR, and 

SNR can be obtained from the FFT spectrum. The model of ADC spectral testing with a clock jitter 

is shown in Figure 4.1. A pure input sine wave is applied to the ADC, where the additive noise of 

the ADC is modeled as random voltage added to the input signal. Jitter is modeled as random clock  
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variation to the ideal clock instant. A data sequence of the ADC output xn is collected to analyze the 

spectral specifications. 

 

Figure 4.1 ADC test configuration 

Assume that the input signal of the ADC under test is a pure sine wave, which can be written 

as 

( ) sin(2 )inV t A ft                              (4.1)            

where A, f, and φ are amplitude, frequency, and phase of the input signal, respectively. One set of 

the ADC output with M sampling points are collected, and the analog representation of the output 

is 

( ) . 0,1.... 1n in s n nx V nT h d w n M                         (4.2) 

where h.d is high-order distortions, wn is the summation of additive and quantization noise, δn is the 

clock jitter at each sampling instant, and Ts is the sampling period. Here, both jitter and noise are 

modeled as random variables following the Gaussian distribution: δn ~N (0,σ2 

1) and wn~N (0,σ2 

2). 

This ADC output set is coherently sampled, meaning that it contains an integer number of cycles, 

and the phase of each sampling point is distinct. 

The jitter effect in ADC testing is shown in Figure 4.2. The input should be sampled at the 

rising edge of the sampling clock, but the uncertainty in clock instant δn causes uncertainty in the 

( ) sin(2 )inV t A ft  
ADC

noise

jitter

ideal clk

nx
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output ΔV. And the value of the uncertainty at the output is proportional to the input slope. In ADC 

spectral testing, if the clock jitter is random and white, the error induced by jitter varies with the 

input phase: it is larger near zero-crossing and smaller at the top and bottom of the sine wave, which 

is also validated by the simulation result in [9]. 

 

Figure 4.2 Jitter effect on ADC testing 

 
(a)Spectrum of a 16-bit ADC 

 
(b) Portion of the spectrum in (a) 

Figure 4.3 Spectra of ADC output with and without the jitter effect 

In the frequency domain, random jitter increases the noise floor as well as the additive noise 

in the ADC output spectrum, which can be seen in Figure 4.3 (a) shows spectra of a 16-bit ADC 
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with and without the jitter effect. Except for jitter information, the other conditions of the two 

spectra are the same. The blue curve is the spectrum when the ADC is sampled with a clean clock, 

and the red curve is the spectrum when the ADC is sampled with a clock jitter. Figure 4.3 (b) shows 

a portion of the spectra in (a), and it can be seen that the noise floor of the spectrum with jitter is 

higher than that without jitter. It can also be seen from the specification SNR that the SNR of the 

red curve is lower than that of the blue curve.  

The summation of the quantization error and additive noise is what we are interested in as 

it is important to get the specifications of SNR. For convenience, the summation of the quantization 

error and additive noise is called noise in the rest of the chapter. If one directly calculates SNR from 

the ADC output spectrum with jitter, it will be less than the true SNR as the jitter is also treated as 

noise, which is illustrated in Figure 4.3. Jitter cannot be separated from noise by a simple FFT 

method [6] as it has the same effect on the noise floor. The following section will discuss the 

property of jitter in ADC testing and separate jitter and noise information using the time domain 

ADC output.  

4.3 Proposed Method 

This section proposes a new method to separate jitter and noise using the time domain ADC 

output data. Two segments of the ADC output sampled under a coherent condition are collected. 

By subtracting the two data sets, the residue containing information of jitter and noise is obtained. 

Applying some mathematical processing to the residue according the characteristics of jitter and 

noise, the power of jitter and noise can be separated. The processing is based on assumptions that 

the two data sets have the same fundamental and harmonic information, the jitter effect on the 
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harmonics can be ignored, and the two data sets are collected coherently. These assumptions will 

be explained in the following paragraphs. 

The ADC output data sequence consisting of M points is described as equation (4.2) in 

Section II. As the RMS of jitter is usually small, we apply Taylor expansion to equation (4.2), and 

the expression of xn can be written as (4.3) 

sin(2 ) 2 cos(2 ) .n s s n nx A fnT fA fnT h d w                      (4.3)     

 It can be seen from equation (4.3) that the error of the ADC output caused by the jitter 

effect (2πfA(cos(2πfnTs+φ)δn) is proportional to the slope and frequency of the input signal. For the 

same clock jitter, the error caused by jitter is larger at a higher input frequency. So jitter is usually 

measured when the input frequency is a little bit less than half of the sampling frequency. 

Moreover, as shown in equation (4.3), we just consider the effect of jitter on the fundamental 

and neglect its effect on harmonics because the jitter effect on harmonics is very small. Taking an 

18-bit ADC, for example, the THD of an 18-bit ADC is at –110 dB, and jitter is usually at ps level. 

Then the error of harmonics caused by jitter is lower than –200 dB, which is far below the noise 

floor and obviously can be neglected.  

If we continuously collect another set of output of the ADC under test with the same data 

length of xn, we can have the expression of the new data sequence as (4.4): 

' ' ' 'sin(2 ) 2 cos(2 ) .n s s n nx A fnT fA fnT h d w                         (4.4) 

as x’ 

n is right following xn, and also coherently sampled, it has the same initial phase with that of xn. 

The fundamentals and high-order of harmonics of the two sets are identical. Then the values of xn  
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and x’ 

n are identical for each sampling instant, except for the influence of jitter and additive noise. 

That is why jitter and noise in equation (4.4) are δ’ 

n and w’ 

n rather than δn and wn.  

Subtracting (4.4) from (4.3), the residue can be written as equation (4.5): 

' ' '2 cos(2 )( ) ( )

2 cos(2 )
n n n s n n n n

s n n

e x x fA fnT w w

fA fnT N

    
  

      

   
            (4.5) 

where Δn= δn-δ’ 

n and Nn= wn-w’ 

n. As illustrated previously, the jitter effect on high-order harmonics 

can be neglected, and the result of (h.d-h.d’) is almost 0, which is not shown in equation (4.5). And 

if δn ~N (0,σ2 

1) and wn ~N (0,σ2 

2), then δ’ 

n and w’ 

n have the same distribution as δn and wn, respectively, 

as the two sets of data are collected continuously in the same environment. Based on basic statistics 

knowledge, the distribution of Δn and Nn can be obtained as 2
1~ (0, 2 )n N  and 2

2~ (0, 2 )nN N  .  

Under the conditions of coherent sampling and long data length, several mathematical 

processings are applied to the residue data described in equation (4.5) to separate jitter and ADC 

noise. We first get the summation of the squared residue: 

 
1 1 1 1

22 2 2 2

0 0 0 0

2 2 2
1 2

2 cos (2 ) 4 cos(2 )

4 ( ) 2

M M M M

n s n n s n n
n n n n

e fA fnT N fA fnT N

M fA M

     

  

   

   

      

 

              (4.6) 

Now one relationship between jitter and noise has been obtained as equation (4.6).  

Next, each value of the residue is multiplied by (2 )scos fnT , and we get equation (4.7): 

  
 

2cos(2 ) 2 cos (2 ) cos(2 )

1 1
2 cos 2 cos(2 )

2 2

n s s n s n

n s n

e fnT fA fnT fnT N

fA fnT fnT N

     

    

    

       
 

            (4.7) 

The total M points’ summation of (4.7) is 

   
1

2 2 2 2
1 2

0

cos(2 ) 3
M

n s
n

e fnT M fA M   




                  (4.8)      
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Another relationship between jitter and noise has been obtained as (4.8), and it is different 

from (4.7). Combining equations (4.7) and (4.8), the variance of jitter and noise can be estimated 

as 

 
1 1

2 2

2 0 0
1 2

2 cos(2 )

2 ( )

M M

n s n
n n

e fnT e

M fA

 




 

 

  


 
                 (4.9) 

 
1 1

22

2 0 0
2

3 4 cos(2 )

2

M M

n n s
n n

e e fnT

M

 


 

 

   


 
               (4.10) 

The RMS of jitter and the power of intrinsic noise then can be calculated as 

2
1jitterRMS                             (4.11) 

 
2
2noiseP                           (4.12)  

Now jitter and noise are separated. Then noiseP  can be used to calculate the ADC’s 

specification of SNR.  

The algorithm to accurately estimate jitter and noise in time domain using the proposed 

method for single-frequency testing is given as the following: 

1) Apply a pure sine input to the ADC under test 

2) Collect two sets of ADC output coherently with the same sample length: nx  and '
nx .  

3) Subtract the two sets; get the residue en. 

4) Apply the two processes to en as (4.6) and (4.8). 

5) Get the variance (RMS) of jitter and noise. 

6) Calculate the true ADC specifications. 
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4.4 Simulation Results 

In this section, the proposed jitter measurement method is validated by simulation data 

generated in MATLAB. An 18-bit ADC is modeled in MATLAB as a set of transition levels. The 

nonlinearity error is modeled as a set of Gaussian distributed variables with zero mean and a 

standard deviation of 0.003 LSB. The total sample points of each segment is 2^15. The sampling 

frequency is set to be 2 MHz. The amplitude of the input sine wave is selected to cover 99% of the 

full range of the ADC, and the input frequency is a little smaller than half of the sampling frequency, 

which is chosen carefully to satisfy the coherent sampling condition. The additive noise is 

introduced with the input. It is Gaussian distributed random noise with zero mean and a standard 

deviation of 1 LSB. The jitter is modeled as a random error added to the ideal sampling instant with 

zero mean and a standard deviation of 3 ps.  

 

Figure 4.4 Spectra of ADC output with and without jitter 

The true specifications of the ADC are obtained by sending a pure input sine wave to the 

ADC and sampling the input with an ideal clock to estimate the measurement error of the proposed 

method. This set of ADC output data without jitter was collected as reference. Then another two 

sets of ADC output were collected continuously and coherently with clock jitter. The jitter and 

additive noise added to the two input signal follow the same distribution. It can be seen from Figure 
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4.4 that the noise floors of spectra with jitter are at the same level as and higher than that of the 

reference spectrum. Although the jitter increases the noise floor, we select the number of total 

sampling points to be large enough that the noise floor is not that high to affect the harmonics.  

As shown in Figure 4.4 the harmonics value of the red (segment 1 with jitter), green 

(segment 2 with jitter), and red (reference) spectra are at the same height. It means that ADC 

specifications such as THD and SFDR are not affected by jitter, and we do not compare them in 

this chapter. However, SNR is decreased as jitter increases the noise power.  

Table 4.1 Testing result of the proposed method 

Jitter added 3 ps SNR true 99.01 dB 

Estimated 3.02 ps SNR estimated 99.09 dB 

The SNR obtained from the ADC output with jitter is 93 dB, whereas the true SNR of the 

reference output is 99.01 dB. As specifications of SFDR and THD are not affected by jitter, they 

are not compared here. The residue of the two sets of data collected with jitter is shown in Figure 

4.5. All information of fundamental and harmonics have been removed; only noise and jitter effect 

are left. After applying the proposed algorithm to the residue, the estimated jitter and SNR are 

shown in Table 4.1. It can be seen from the table that the estimation of jitter is almost identical to 

the jitter value added to the ADC, and the jitter effect on SNR has been thoroughly removed. It can 

be concluded that the proposed method can separate jitter and noise in ADC testing successfully. 

And after jitter and noise separation, correct ADC specifications can be obtained. Simulations of 

ADCs with different resolutions are performed to demonstrate the functionality and accuracy of the  
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proposed method, as shown in Table 4.2. It can be said that the proposed method estimates jitter 

and SNR accurately.  

 

Figure 4.5 Spectrum of residue en 

Table 4.2 Testing result of ADCs with different resolutions 

 12-bit 14-bit 16-bit 

Sampling frequency 10 MHz 5 MHz 2 MHz 

M 2^13 2^13 2^14 

THD –81.24 –91.1 dB –105 dB 

Jitter added 5 ps 5 ps 3 ps 

Jitter Estimated 5.0 ps 4.99 ps 3.01 

SNR true 72.22 dB 82.78 dB 94.81 dB 

SNR estimated 72.8 dB 82.62 dB 94.92 dB 

 

In the ADC output spectrum, except for harmonic distortions, there are usually nonharmonic 

spurs generated by periodic jitter, time interleaving, and other factors. All the nonharmonic spurs 

affect the jitter testing result if they are not set to be zero before the processing in reference [9]. 

This requires prior knowledge of those spurs. However, the proposed method in this chapter is 
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robust to nonharmonic spurs; testers do not need to know the number of harmonics and the locations 

of nonharmonic spurs of the ADC under test. 

A 16-bit ADC modeled in MATLAB is used to verify the functionality of the proposed 

method in dealing with nonharmonic spurs. The nonharmonic spurs in the spectra shown in Figure 

4.6 are modeled as periodic jitter added to the sampling clock. The reference ADC output is sampled 

with an ideal clock, and segment 1 and 2 are sampled with both random jitter and periodic jitter. 

The RMS of random jitter is 3 ps. The random jitter increases noise floor in the spectra, and periodic 

jitter generates nonharmonic spurs in the spectra. 

 

Figure 4.6 Spectra of a 16-bit ADC output without jitter (blue), with random and periodic 
jitter (red and green) 

 

 

Figure 4.7 Spectrum of residue en 

Figure 4.7 shows the spectrum of residue after the subtraction of the two segments of the 

ADC output with jitter. It can be seen that there is no information of harmonics and nonharmonic 
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spurs left. The jitter estimation results of different methods are shown in Table 4.3. The estimation 

result of the proposed method is 2.98 ps, and the method from Reference [9] is 2.97 ps when the 

nonharmonic spurs are excluded. But if the nonharmonic spurs are not excluded, the estimation 

result error is large. From the table, it can be concluded that if nonharmonic spurs are not set to be 

zero, they can affect the jitter estimation result. However, the proposed method is accurate whether 

there are nonharmonic spurs or none.  

Table 4.3 Jitter estimation results 

Method RMS of jitter 

Proposed method 2.98 ps 

Ref [9] with spurs exclusion 2.97 ps 

Ref [9] without spurs exclusion 3.63 ps 

 

4.5 Conclusion 

A simple, accurate, and efficient method that simultaneously extracts the clock jitter and the 

additive noise of ADC testing was presented. Compared with conventional standard jitter estimation 

methods, this new algorithm only needs one frequency input applied to the ADC test. So it decreases 

the test cost both in hardware and in testing time. Compared with the conventional one-frequency 

method, the method in this chapter does not need prior information of harmonics and nonharmonic 

spurs, which increases the accuracy of the estimation. Moreover, for jitter and noise separation, it 

does not require FFT in the calculation. Simulation results validated the functionality and accuracy 

of the proposed method. In future work, the method needs to be justified by measurement results, 

and the algorithm can be modified to work under a noncoherent sampling condition. 
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CHAPTER 5. AN SNR ESTIMATION METHOD FOR ADC SPECTRAL TESTING WITH 

CLOCK JITTER 

Spectral testing in an important category in ADC testing. The sampling clock quality is a 

crucial factor in ADC spectral testing. The accumulated clock jitter of the sampling clock generates 

power leakage in the fundamental component of the ADC output spectrum. The random clock jitter 

increases the noise floor of the ADC output spectrum. The two kinds of jitter thus decrease the SNR 

of the ADC under test. A new algorithm is proposed in this chapter to accurately estimate the SNR 

with sampling clock jitter. This method does not require precise a sampling clock and thus reduces 

the test cost. The ADC output sequence is separated into small segments. Segment pairs are found 

through initial phase matching. By analyzing the difference of the segments pairs, the noise power 

is estimated, and then SNR is obtained. Simulation and measurement results against the standard 

test methods collaborate to validate the accuracy and robustness of the new solution.  

5.1 Introduction  

With technological development, more complex circuits such as SoCs are designed. 

Although this approach decreases the design cost by embedding more circuits on a single chip, it 

increases the cost associated with testing such systems. The ADC is one of the important building 

blocks in modern mixed-signal products. It is one of the most widely used integrated circuits (IC) in 

SoCs. As speed and performance increase, the testing of the ADC is becoming challenging. Spectral 

testing, also called AC testing, includes testing of ADCs’ dynamic specifications, such as THD, 

SFDR, SNR, and so on [1]. Spectral performance is usually tested by the DFT method using a pure 
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sine wave as input. For SoCs, as all blocks are built in a single chip, the precision of the sampling 

clock is a crucial issue in the testing. 

Clock jitter, defined as the difference between the real sampling instant and the ideal 

sampling instant, is an important specification in high-speed analog-mixed signal devices. In ADC 

testing, jitter plays a crucial role. Jitter can be classified as random clock jitter and accumulated clock 

jitter in this chapter. 

Random clock jitter, usually Gaussian distributed, increases the noise floor of the ADC 

output spectrum, especially when the signal frequency is high. There is degradation in the estimated 

SNR due to the random clock jitter. If the sampling clock is on-chip, the stability cannot be 

guaranteed that it can generate an accumulated clock jitter except for random clock jitter.  

Accumulated jitter in sampling clock can also be called frequency drift as it causes the 

sampling frequency to deviate from the intended one. The accumulated clock jitter generates the 

power leakage in the fundamental component of the ADC output spectrum. This effect is similar to 

the power leakage caused by noncoherency. However, traditional methods that are effective in 

solving the noncoherency problem cannot remove the effect caused by accumulated jitter. These 

methods include windowing [1] and FIRE [2]. 

Many methods have been proposed to measure or characterize clock jitter, especially for 

high-speed application [3,4]. These methods use precise and expensive instruments to analyze the 

clock signal to obtain the jitter information. For ADC application, many methods have been 

proposed to test ADC in the presence of clock jitter. Dual-frequency methods are the conventional 

methods in ADC testing with a random clock jitter. It applies two inputs with sufficient separate 
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frequencies to the ADC under test to calculate the SNR degradation at a higher frequency [5,6]. This 

method increases the test cost as the requirement of the signal generator and synthesizers are high 

for the ATE test.  

Methods [7–9] are proposed to test the correct ADC SNR in the presence of a random clock 

jitter. These methods can estimate the correct SNR when the random clock jitter is not large. 

However, the major limitation of these methods is that they only consider random clock jitter; they 

model the clock jitter as a variable with zero mean Gaussian distribution. Accumulated clock jitter 

is not taken into consideration.  

The effect of sampling clock jitter on the acquired samples is analyzed in [9]. This paper 

proposed two methods to estimate jitter for superheterodyne receiver architectures and cognitive 

radio architectures at high sampling rates. A method to compensate for the jitter is also proposed. 

The methods are tested and validated through computer simulations and theoretical analysis. 

The effective impact of jitter on the SNR of the ADC process [10] is evaluated when the 

observation interval is limited to a finite number of samples. It will be shown that, in this case, the 

jitter constraints on the sampling clock can be more relaxed. 

The effect of sampling clock jitter on the acquired samples in the midst of quantization noise 

and random Gaussian noise is analyzed in [11]. The paper proposes a method for estimating jitter 

for cognitive radio architectures at high sampling rates. The paper also examines the fixed-point 

implementation of the algorithm and its theoretical performance. However, it only includes 

theoretical and simulation; there are no measurement results to verify the method. 
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A modified way of calculating timing jitter using phase modulation (PM) noise 

measurements of high-speed digital clocks is presented in [12], which considers the frequency 

response of the jitter analyzer, providing a more accurate map. 

Sampling clock jitter effects in digital-to-analog converters are described in [13]. A formula 

for the output error power because of the sampling clock jitter for a sinusoidal input is derived and 

verified by numerical simulations, and its spectrum characteristics are shown. Also, its effects on 

ADC SNR are clarified by numerical simulation as follows: (1) When the total noise power outside 

as well as inside the signal band is taken into account, the ADC SNR remains almost constant 

regardless of the sampling jitter. (2) However, when an analog low-pass filter follows the ADC and 

only the noise power inside the signal band is considered, the ADC SNR degrades as jitter increases 

and the input signal frequency becomes higher. Thus the sampling clock jitter is serious for the high-

speed ADC. 

The effect of accumulated jitter on the estimation of SNR is analyzed in frequency domain 

[14] and time domain [15]. Both theoretical analysis and simulation show the accumulated jitter on 

SNR estimation. However, none of the papers mentioned provide a validation of measurement 

results. 

It can be seen that many methods were proposed to investigate clock jitter and its effect on 

ADC testing. The methods in the literature mentioned above suffer from one or more of the following 

issues: (1) the model of clock jitter is not realistic; (2) only theoretical derivation and simulation 

were given, and none of those papers applied measurement results to verify their analysis; and (3) 

methods to estimate the correct SNR, which means to recover the correct SNR from the effect of 
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clock jitter, were not given. So it is required to develop a test method that can obtain the correct SNR 

in the presence of clock jitter. Moreover, the jitter model must be realistic, and the method should be 

verified by measurement results and can be applied for ADC testing in the industry. 

In this chapter, a test method that can estimate the SNR with clock jitter is presented. The 

model of the clock jitter is given as the presence of both accumulated jitter and random clock jitter. 

The jitter properties and their effect on ADC testing are investigated. For the first time, the 

restriction on the sampling clock is removed so that the sampling clock can be accumulated jitter 

or random jitter or the superposition of the two kinds of jitter. Both simulation results and 

measurement data from the industry validate the functionality of the proposed method. This makes 

the testing of ADC using a low quality of sampling clock possible.  

The remaining chapter is arranged as follows: Section 2 describes clock jitter and its effect 

on ADC testing. The new test method is presented in Section 3. Sections 4 and 5 provide simulation 

and measurement results. Section 6 concludes the chapter. 

5.2 Problem Statement 

In ADC spectral testing, a pure sine wave is fed into the ADC under test. DFT is performed 

to the ADC output, and then the spectrum is analyzed to obtain the spectral performance. 

 

Figure 5.1 ADC test setup 

ADC

noise

fs

Sampling clock  
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Figure 5.1 shows the test setup for the ideal spectral test method [16]. Here, ideal means the 

test setup satisfies the ADC spectral test requirements in IEEE standards [1]. Vin(t) is the input signal, 

and noise is the additive noise in Figure 5.1. 

The expression of the pure sine wave input with amplitude A, offset osV , frequency f, and 

initial phase   is shown in equation (5.1): 

 (t) Asin 2in osV V ft                             (5.1) 

Let us suppose that ADC under test is N bit and the sampling rate is fs=1/Ts. If the clock is 

ideal, the sampling instant at the nth sample is 

0,1,2... 1n st nT n M                      (5.2) 

Here, M is the number of sampled points that are usually collected for the spectral testing 

of an N-bit ADC. The analog interpretation of the ADC output can be expressed as 

 [n] sin 2 . [n]os sx V A fnT h d w                      (5.3) 

w[n] is the superposition of additive noise and quantization noise at the nth sample, and 

 
2

. cos 2
H

h s h
h

h d A hnT 


  is high-order harmonics where Ah and φh, respectively, contain the information 

of amplitude and phase of hth harmonic of ADC. 

 

Figure 5.2 Spectrum of a coherent ADC output 
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If the input signal is sampled coherently, which means that the data record length contains 

exactly an integer number of cycles, the spectrum of the ADC output is like the one shown in Figure 

5.2. 

In reality, the clock may be unstable or the sampling frequency can drift because of 

temperature fluctuation. Clock jitter is defined as the difference between the real clock edge and the 

ideal clock edge. As shown in Figure 5.3, the ideal clock period is Ts, and the sampling instant is at 

time 0, Ts, 2Ts, and so on. The clock is however affected by some amount of jitter. Then there are 

deviations between the real sampling edges and the ideal ones. Let δn be the clock jitter at time nTs, 

and the deviations δ0, δ1, and δ2 shown in Figure 5.3 are the jitter of the clock. Because of that jitter, 

the sampling instants are then shifted to 0+δ0, Ts+δ1, and 2Ts+δ2. 

Ts

δ0

2Ts0

δ2δ1

 

Figure 5.3 Clock jitter 

 

Figure 5.4 Clock jitter on ADC output 
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The jitter effect on the ADC sampled data will be shown in the following section. For ADC, 

the sample is taken when the ADC’s track and hold goes into the hold state. As shown in Figure 5.4, 

the input sine wave should be sampled at the rising edge of the sampling clock. Assuming that the 

sampling instant is nTs, the uncertainty in clock shifts the sampling instant to nTs+δn, causing 

uncertainty ΔV in the input. Thus, there is uncertainty in the ADC output, and the value of the 

uncertainty at the output is proportional to the input slope. 

 

Figure 5.5 Example of random clock jitter 

 

Figure 5.6 Histogram of the random clock jitter in Figure 5.5 

5.2.1. Random Clock Jitter  

Random clock jitter usually follows Gaussian distribution. In this chapter, random clock 

jitter is modeled as a variable with zero mean and a certain value variance. Figure 5.5 shows an 

example of random clock jitter generated in MATLAB: 16,384 points with a mean of zero and an 

RMS of 1.7 ps. Figure 5.6 shows the histogram of the clock jitter shown in Figure 5.6. It can be 
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seen from the histogram that the generated random clock jitter roughly follows Gaussian 

distribution. As the random clock jitter is Gaussian distributed, its spectrum is like the one of white 

noise, as shown in Figure 5.7. 

 

Figure 5.7 Spectrum of the random clock jitter shown in Figure 5.5 (relative to s2) 

 

Figure 5.8 Spectrum of an ADC output without random clock jitter (black) and spectrum 
of the ADC output with random clock jitter (red) 

If an ADC is tested using a clean sampling clock, the spectrum of the ADC output can be 

seen as the black spectrum in Figure 5.8. While there is random clock jitter in the sampling clock, 

the spectrum of the ADC output can be seen as the red one in Figure 5.8. Except for the clock jitter, 

the other settings of the red spectrum are the same as those of the black spectrum, such as input 

amplitude and frequency, sampling frequency, ADC performance, and so on. It can be seen that the 

harmonic values of the two spectra are the same. The only difference between them is that the noise 

floor of the red one is higher than that of the black one. One can also analyze the expression of DFT 
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noise floor of the ADC output spectrum. If the SNR is calculated directly from the red spectrum, 

the value is smaller as jitter is treated as noise in this case. 

5.2.2. Accumulated Clock Jitter 

Accumulated clock jitter is an accumulation of random clock jitter. As it is an accumulation, 

it is much more difficult to analyze the property in the means of distribution. Figure 5.9 shows an 

example of accumulation clock jitter. It is the accumulation of random clock jitter shown in Figure 

5.5, which passes through a low-pass filter. It can be seen that the accumulated clock jitter is much 

larger than the random clock jitter as it accumulates in time domain. Figure 5.10 shows the 

histogram of the clock jitter shown in Figure 5.9. It cannot be concluded what kind of distribution 

an accumulated jitter follows. For another set of a given random clock jitter used for accumulation, 

the shape of accumulated clock jitter and its histogram will be totally different. In frequency domain, 

the spectrum of the accumulated jitter shown in Figure 5.9 is also shown in Figure 5.11. It can be 

seen that the spectrum is not white and there is power leakage caused by accumulation. The effect 

of accumulated clock jitter on the ADC output spectrum is shown in Figure 5.12. The black one is 

the spectrum of the ADC output with a clean clock, and the red one is that with accumulated clock 

jitter. It can be seen that there is power leakage in both the fundamental and the noise increasing in 

the noise floor. 

 

Figure 5.9 Example of accumulated clock jitter 
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Figure 5.10 Histogram of accumulated clock jitter in Figure 5.9 

5.2.3 Jitter Effect versus Noncoherency in ADC Output 

Because of the increasing frequency and data rate, jitter can be the ultimate limit of the 

performance in some applications. Random clock jitter increases the noise floor and then reduces 

the estimated SNR value. When accumulated jitter dominates the clock jitter, even the collected 

ADC output samples are set to be coherent, and there is still power leakage as shown in the red 

spectrum in Figure 5.12. The power leakage looks like the one generated as noncoherency. However, 

the leakage cannot be removed by traditional methods, which are effective in noncoherency.  

 

Figure 5.11 Spectrum of accumulated clock jitter in Figure 9 (relative to s2) 
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conventional noncoherency method. Then the SNR calculated from this spectrum is not correct. A 

method needs to be developed to calculate an SNR without the jitter effect. 

 

Figure 5.12 Spectrum of an ADC output without accumulated clock jitter (black) and 
spectrum of an ADC output with accumulated clock jitter (red) 

 

Figure 5.13 Spectrum of an ADC output with accumulated clock jitter (red) and spectrum 
of an ADC output with accumulated clock jitter + FIRE 

5.2.4 Jitter Effect in Time-Domain ADC Output 
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testing, one can tell that there is clock jitter through the SNR estimation results the data collected 
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of points for the two segments, then the deterministic terms of the two segments, such as 

fundamental and harmonics, are the same. The only difference is the random terms, such as additive 

noise and clock jitter. If we take subtraction of the two segments point by point, the difference of 

the two segments can be shown as in Figure 5.14 and Figure 5.15. The identical deterministic terms 

are removed, leaving the noise and clock jitter effect.  

 

Figure 5.14 Difference of two segments with accumulated clock jitter 

 
(a) 

 
(b) 

Figure 5.15 Difference of two segments with accumulated clock jitter 
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like white. The values of the difference are around several LSBs (least significant bits). Figure 5.15 

shows two cases of two segments’ difference with accumulated clock jitter. As jitter may 

accumulate in a different trend for two segments, the difference may grow up and down in different 

shapes. This will be explained in detail in Section 3. 

5.3 Proposed Method 

In the proposed method, the data record length of the ADC output is set to be M, where M 

is the number of points usually used to test the spectral performance for an N-bit ADC. Then the 

first half points of the ADC output are broken into small segments. Other sets of small segments 

are searched in the second half points to be matched best with segments in the first half points. 

Subtraction is applied between the matched pairs. The fundamental of the segments’ difference is 

identified and removed. Jitter and noise separation is applied to the residue, and noise power is 

calculated to compute the SNR. The detail of the proposed method is shown as follows: 

Equation (5.3) shows the expression of the ADC output when the clock is clean. When there 

is clock jitter, (5.3) can be modified as 

  [n] sin 2 . [n]os s nx V A f nT h d w                          (5.4) 

where δn is the clock jitter at time nTs. 

5.3.1 Jitter Model 

As accumulation jitter accumulates in an unpredictable trend, defining it quantitatively is 

hard. So RMS alone is not enough to describe accumulative jitter. In this chapter, we use 

segmentation to express the jitter model. It must be stated that, in reality, the jitter sequence cannot 

be observed from the clock. All we can see is the actual sampling instant, which is nTs+δn. In time 

domain, the jitter drifts as a fluctuation. We model the jitter as the superposition of accumulated 
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clock jitter and random clock jitter, as shown in equation (5.5): 

[n] [n] [n]c r                              (5.5) 

Here, δr[n] is the random jitter at sampling instance nTs, and δc[n] is the accumulated clock 

jitter at sampling instance nTs. Although the drifting of accumulated jitter cannot be predicted, we 

can model the accumulated jitter by small segments.  

 
(a) 

 
(b) 

Figure 5.16 Time domain clock jitter (a) and a portion of the curve in (a) 

Figure 5. 16(a) shows an example of δn. If we zoom a small segment of the curve, it can be 

shown in Figure 5. 16(b). It is a curve with an initial value, slope and some random terms. However, 

we do not know the exact value of these parameters. We can break the long jitter sequence into 

small segments. For each small segment, the expression of the accumulated jitter can be expressed 

as these three parameters as shown in equation (5.6). 

[n] [n]c cc cl crn                             (5.6) 
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In equation (5.6), the accumulated jitter is modeled as three terms: constant offset δcc, slope 

δcl, and local random term δcr[n]. The constant offset is the initial value of each segment. The slope 

is the slope of the endpoint line of the segment. The local random term is the distance of the 

accumulated jitter from the endpoint line. Simply, the small segmented accumulated jitter can be 

modeled as a straight line plus some random term.  

This chapter aims to estimate the correct spectral performance without the jitter effect, so 

these jitter parameters are not estimated here. This model helps remove the jitter effect from the 

ADC output, and then the correct noise power of the ADC under test can be calculated. 

5.3.2 Segmentation Pairs 

The first M/2 points in (5.4) are broken into small segments—x1[n], x2[n],…,xs[n]—each 

segment has m points, as shown in Figure 5.17. Here, m is a small number, and it can be set to 64 

or 128 in this chapter. For each segment xi[n], i=1,2,…,s, find another segment x’i[n] in the second 

M/2 points, letting the initial phase of x’i[n] match that of the xi[n] best. 

 

Figure 5.17 Time-domain ADC output 

The expression of xi[n] is shown in (5.7): 

  [n] sin 2 [n] . [n]i os sx V A f nT h d w           n=0,1,2,…m–1           (5.7) 

Compared with the value of sampling instance nTs, the value of clock jitter δ[n] is a 

relatively small value. We can apply Taylor expansion to the fundamental part in (5.7). Then 

equation (5.7) can be written as 

M/2

M

x1 x2 x3 xs x1’ x2’
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   [n] sin 2 2 cos 2 [n] . [n]i os s sx V A fnT fA fnT h d w                 (5.8) 

And x’i[n] can be written as 

   ' ' ' ' ' '[n] sin 2 2 cos 2 . [n]i os s s nx V A fnT fA fnT h d w                (5.9) 

If we subtract xi’[n] from x[n] point by point, it can be seen that the offset Vos is canceled. 

As the initial phases of the two segments are nearly identical, the fundamentals of the two segments 

are approximately equal to each other, and the harmonic difference of the two segments (h.d-h.d’) 

can be ignored. Even if the initial phases of the two segments are not the same, there is a small 

amount fundamental residue in the difference. The difference of the two segments can be expressed 

as 

  ' '[n] [n] 2 cos 2 [n] [n] [n]i i res sx x F fA fnT N                       (5.10) 

where Fres is the fundamental residue,    ' 'sin 2 sin 2s sA fnT A fnT      , and N[n] is the difference 

of the noise (N[n]=w[n]-w[n]’) with zero mean, and the variance is twice that of w[n]. 

5.3.3 Fundamental Removal for Segments 

With the jitter model shown in (5.5) and (5.6), equation (5.10) can be rewritten as  

    ' ' ' '[n] [n] 2 cos 2 [n] [n] [n]res s cc cl cr cc cl crx x F fA fnT n n N                          (5.11) 

As δcc is a constant value for each small segment, the difference of δcc and '
cc is also constant 

for each segment pair. This difference is modulated on the fundamental, making 

  '2 cos 2 s cc ccfA fnT       also a fundamental term. Working with Fres, it forms a new fundamental 

residue, F’res. Let '[n] [n] [n]cr cr cr     and '[n] [n] [n]cl cl cl    . Then (5.11) can be written as 

   ' '[n] [n] 2 cos 2 [n] 2 cos 2 [n] [n]res s cr s clx x F fA fnT fA fnT N                      (5.12) 

Then the fundamental in (5.12) is identified and removed, and the left residue ei[n] only 

contains jitter and noise information as shown in (5.13): 
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   [n] 2 cos 2 [n] 2 cos 2 [n] [n]i s cr s cle fA fnT fA fnT N                  (5.13) 

We know that the clock jitter is a slow drifted variable. If m is large, the clock jitter will 

accumulate. Taking m=1024, for example, the ei[n] is shown in Figure 5.15. The horn shape is 

mainly caused by the accumulated jitter, which is a slow drift term. However, if we set m to be a 

small number, the time for data acquisition of xi[n] is too small that the accumulation of the clock 

jitter is not serious. Taking M=1024 and m=64, for example, combining the s (s=M/m=16) segments 

and ei[n] (i=1,2,…,16) together, the new e[n] is shown in Figure 5.18.  

 

Figure 5.18 e[n] when m=64, M=1024 

5.3.4 Jitter and Noise Separation 

For this step, the residue only contains noise information of the ADC under test and some 

random clock jitter residue.  '[n] 2 cos 2 [n] [n]s clN fA fnT N       is a random term with variance 

proportional to the m length, and the residue of all the segment pairs can be written as 

  '[n] 2 cos 2 [n] [n]s cre fA fnT N         n=0,2,…M–1                (5.14) 

Now, the residue contains a random jitter modulated with fundamental and random noise. 

Then the jitter and noise separation method in [7] can be used to solve noise power and then 

calculate the value of SNR without the jitter effect. The variance of '[n]N  can be calculated as 
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Figure 5.19 Algorithm flowchart 

5.3.5 Noise Power Correction 

It must be stated that the variance of '[n]N  varies with the m value as the accumulated jitter 

is like a random walk, which is also called the Wiener process. Then the variance of '[n]N  

calculated in the equation is different when m is different. As segment size doubles，the variance 

of '[n]N  doubles. Another variance Pn2 is obtained when m is doubled. However, the variance of 

N[n] should be the same as it is twice that of the ADC’s noise, which should be constant. Then the 

noise power Pn, which is also the variance of N[n], can be calculated as 2Pn1–2Pn2. 

  

 

Acquire M points x[n]

Get the difference of the segments pairs

Identify and remove the fundamental of the difference

Calculate variance of noise 

Redo the last steps by setting m to be 2m

Separate the first M/2 points into s segments, each seg. 
with m points

Find  another s segments in x[n], let the initial phases 
match best 

Calculate the noise power through the 2 variances

Calculate signal power

Calculate SNR
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The SNR is calculated as 

2

10

/ 2
10log

n

A
SNR

P
                          (5.16) 

Now the correct SNR of the ADC under test in the presence of a clock jitter is obtained.  

The algorithm for this method is described in Figure 5.19. 

 

5.4 Simulation Results 

In this section, the proposed SNR estimation method is validated by the simulation data 

generated in MATLAB. A 14-bit ADC is modeled in MATLAB as a set of transition levels. The 

nonlinearity error is modeled as a set of Gaussian distributed variables with zero mean and a certain 

standard deviation. The additive noise is introduced with the input. It is Gaussian distributed 

random noise with zero mean and a standard deviation of 0.75 LSB. The ADC was first tested with 

a sine wave that was coherently sampled, and the sampling clock is modeled as ideal. The value of 

the SNR obtained is considered the reference value. The same ADC is later fed with the same input 

signal. However, the sampling clock is modeled as clock jitter added to the ideal sampling instant. 

The sampling clock jitter is modeled as the superposition of an accumulated Gaussian distributed 

term, and another Gaussian distributed term a random error. Table 5.1 shows the parameter setting. 

And the input amplitude is set around –0.05 dB to almost cover the full scale of the ADC under test. 

Table 5.1 Parameter setting of the simulation 

f 0.9 MHz M 2^15

fs 1 MHz m 128

 

The amount of jitter added to the clock is relative to the ADC’s quantization noise power. 
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The quantization noise power is calculated as 

2

12qu

q
P                                      (5.17) 

In equation (5.17), q is 1 LSB.  

For random clock jitter, let σr be the standard deviation, and the jitter-induced power for the 

ADC is calculated as 

 2
2

2
r

r

fA
P

 
                              (5.18) 

While the random clock jitter–induced power is given as (5.18), it is much more difficult to 

determine the accumulated jitter power. As the accumulated jitter is obtained through the 

accumulation of a Gaussian distributed random noise, we use the power of the Gaussian term to 

indicate the amount of accumulated jitter in this chapter. It must be pointed out that the actual 

accumulated jitter power is far more than the Gaussian term power. Let the RMS of the Gaussian 

noise used for accumulation be σc, and the accumulated jitter power is given as 

 2
2

2
c

c

fA
P

 
                       (5.19) 

5.4.1 Simulation Test Results 

We add both random clock jitter and accumulated clock jitter to the sampling clock. The 

simulation results of SNR estimation are shown in Figure 5.20. The horizontal axes are the variance 

of the random jitter 2
r  and the Gaussian term 2

c  used to accumulate. As the jitter can accumulate, 

the actual jitter power is far larger than the one shown in the horizontal axes.  

The red lines are the reference SNR of the ADC under test, and they are obtained when the 
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input signal is sampled coherently and there is no clock jitter. The black lines are the SNR values  

 

Figure 5.20 SNR simulation results in the presence of both types of jitter 

 

Figure 5.21 The reference SNR and the SNR using the proposed method in Figure 5.20 

obtained from direct FFT when there is clock jitter. The proposed method, the estimated SNR with 

clock jitter, is shown as blue lines in the figure. It can be seen from the figure that as jitter amount 

increases, the direct estimated SNR decreases as jitter amount affects the noise power calculation. 

The effect of accumulated jitter is much more than that of random jitter. The SNR using the 
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proposed method is close to the reference SNR. These two SNRs are shown in Figure 5.21. It can 

be seen that the reference SNR is around 77 dB, and the proposed SNR is 75 to 78 dB, which is 

much more accurate compared with the direct estimation. 

5.4.2 Compared with the VTS14’ Method 

We first include only random clock jitter in the sampling clock to verify the validity of the 

proposed method on random jitter and compare it with the VTS14’ method. And then both random 

jitter and accumulated jitter are added to compare the proposed methods with the VTS14’ method. 

 

Figure 5.22 SNR simulation results with random clock jitter 

 

Figure 5.23 SNR simulation results with both random jitter and accumulated jitter 

Figure 5.22 shows the simulation results when there is only random clock jitter. Twenty 
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simulations are run with different amounts of jitter added. The horizontal axis shows the ratio of 

the Gaussian jitter power to the quantization noise power. There is only random jitter in the clock 

and no accumulated clock jitter. The red dots in Figure 5.22 are SNR estimated using a clean clock, 

which can be treated as a reference. The black dots are the SNR estimated directly from DFT when 

there is random clock jitter. It can be seen that as jitter amount increases, the SNR value decreases. 

The green ones are obtained from the VTS14’ method, and the blue ones are obtained using the 

proposed method. It can be seen from the figure that both the VTS14’ method and the proposed 

method work when there is only random jitter. And the SNR estimation is accurate under different 

jitter amounts using the proposed method. It must be stated that the power ratio 100 is so large that 

is not realistic. The simulation here shows that the proposed method works even if the jitter is that 

large. 

Then the random jitter power is set to be 20 times that of the quantization power, and the 

accumulated jitter is increased from 0 to 20 times that of the quantization power to show the validity 

of the two methods. Figure 5.23 shows the simulation results: it can be seen that with clock jitter, 

the direct estimated SNR is far from accurate. When the jitter amount is small, the VTS14’ method 

works, but the results are bad when the accumulated jitter amount increases, whereas the proposed 

method is accurate regardless of jitter amount. 

 

5.5 Measurement Results 

In this section, silicon measurement results are presented to validate the effectiveness of the 

proposed SNR estimation method. A commercially available 14-bit 1 Msps SAR ADC with an 
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integrated 25 MHz RC oscillator is chosen for this experiment. The ADC input signal frequency is 

around 19 kHz, and it is fine-tuned to achieve coherent sampling. First, ADC SNR is measured with 

an “ideal” off-chip 25 MHz clock source. This is denoted as the “reference SNR.” Next, ADC SNR 

is measured with the on-chip jittery RC oscillator, which is denoted as the “direct estimated SNR.” 

Then the proposed method is applied to the ADC output with the on-chip RC oscillator and 

the true ADC SNR is estimated, which is denoted as the “proposed estimated SNR.” This experiment 

is repeated on four devices, and the measurement results are shown in Table 5.2. It is clearly evident 

from the results that the proposed method provides an accurate estimation of the true ADC SNR in 

the presence of clock jitter.  

Table 5.2 Measurement Results (unit: dBs) 

 Reference 
SNR 

Direct 
estimated 
SNR 

Proposed 
estimated 
SNR 

ADC_1 77.4 22.1 75.4 

ADC_2 77.7 13.5 76.5 

ADC_3 77.8 13.2 76.0 

ADC_4 78.2 13.6 76.7 

 

5.6 Conclusion 

A new test method that accurately estimates the SNR of an ADC with sampling clock jitter 

was proposed. This relaxed the requirement to have a precise sampling clock for spectral testing. A 

new segment matching method was proposed to remove the accumulated jitter and random clock 

jitter. Correct noise power can be calculated without the effect of jitter. A more realistic jitter model 
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was proposed and analyzed in this chapter. The collected ADC output was separated into small 

segments. By analyzing the difference of the matched segments pairs, correct noise information 

was calculated. Then the SNR was estimated without the jitter effect. The accurate functionality of 

the proposed method was presented using simulation results on 14-bit ADCs. This method was also 

compared with literature, proving that it also works even when there is only random clock jitter. 

The proposed method was also verified using commercially available ADC testing results. For the 

first time, there is a method working on accumulated clock jitter using industry data to prove the 

validation. This method can be readily used in applications where obtaining precise control over a 

sampling clock, such as BIST ADCs, is challenging.  
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CHAPTER 6. SUMMARY 

In this dissertation, challenges in standard high-performance ADC spectral testing were 

discussed. Algorithms of accurate spectral testing without accurate instrumentation were presented. 

The first method eliminated the requirements of coherent sampling and in-range control of input 

amplitude of ADC spectral testing. The second method relaxed the conditions of precise control 

over amplitude and frequency. Furthermore, it obtained linearity performance in the meantime 

without additional consumption. The third method allowed spectral testing with an imprecise 

sampling clock. The method provided noise and jitter separation, which can be used for low-cost 

jitter characterization. The fourth method was proposed to test ADC spectral performance when 

there is accumulated clock jitter. This method can be used in on-chip ADC testing and ADC testing 

with low-cost instrumentations. Both simulation and measurement results were used to verify these 

methods. All of the proposed algorithms aimed to relax the stringent requirements of spectral testing 

setup. Making the setup less stringent can reduce the requirements and the cost of the testing 

instruments. Furthermore, the algorithms can be used for BIST applications. 
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